期刊文献+

基于粒子群优化算法的电阻抗图像重建 被引量:8

Image reconstruction of electrical impedance tomography based on particle swarm optimization algorithm
下载PDF
导出
摘要 电阻抗成像的实际应用具有许多优越性,但电阻抗图像重建是一个严重病态的非线性逆问题。目前电阻抗成像的静态算法大多采用Newton-Raphson类算法,这类算法需要计算Jacobian矩阵、使用正则化技术等,算法复杂且稳定性较差。针对该问题,采用了一种新的求解逆问题的方法:粒子群优化算法(PSO)。PSO是一种基于种群搜索策略的自适应随机算法,具有算法简单、调节参数少、收敛速度快、易于实现等特点。给出了电阻抗成像的建模模型,并对粒子群优化算法做了适当的改进以适应电阻抗问题的求解。与牛顿类算法相比,它可以省去繁复的雅可比矩阵计算过程,而采用自适应搜索来求取最优解。仿真结果表明,应用PSO进行图像重构时,能够对突变区域进行准确的定位,图像分辨率较高。 Electrical impedance tomography(EIT) has many advantages in practical application,but image reconstruction of EIT is a highly ill-posed,non-linear inverse problem.Newton-Raphson algorithms are widely used in EIT,which have to calculate the Jacobian matrix and use regularization techniques.So this kind of algorithms is complex and less stable.To address the problem,a new static image reconstruction method for EIT is proposed based on particle swarm optimization(PSO) algorithm.PSO is a population-based,adaptive search optimization technique.It is simple in concept,few in parameters,quick in convergence and easy in implementation.The model of EIT forward problem is given and some appropriate improvements in PSO are made to accommodate the solution of EIT.Compared with Newton-Raphson(MNR) algorithms,PSO only uses an iterative processing to get the best solution instead of using a complicated Jacobian matrix.The experimental results indicate that using PSO-based algorithm to solve image reconstruction of EIT,the position of mutation region is more accurate and graphics space resolution is much higher.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第1期82-87,共6页 Journal of Chongqing University
基金 科技部中俄国际合作项目(ISCP2007DFR30080) 国家'111'计划项目(B08036) 国家自然科学基金面上项目(50877082) 重庆大学'211工程'三期创新人才培养计划建设项目(S-09111)
关键词 电阻抗成像 粒子群优化算法 图像重建 electrical impedance tomography(EIT) PSO algorithm image reconstruction
  • 相关文献

参考文献17

  • 1WEBSTER J G. Electrical impedance tomography[M]. Bristol, England: Adam Hilger, 1990: 1-205. 被引量:1
  • 2BARBER D C, BROWN B H. Applied potential tomography[J]. Journal of Physics E: Scientific Instruments, 1984, 17(9):723-733. 被引量:1
  • 3CHENEY M, ISAACSON D. Issues in electrical impedance imaging [J]. Computing in Science and Engineering, 1995,2(4) : 53-62. 被引量:1
  • 4罗辞勇,朱清友.改进的电阻抗反投影成像算法[J].重庆大学学报(自然科学版),2009,32(3):243-246. 被引量:5
  • 5黄嵩,张占龙,姚骏,何为.基于混合正则化算法的颅内异物电阻抗成像仿真研究[J].中国生物医学工程学报,2007,26(5):695-699. 被引量:4
  • 6刘国强著..医学电磁成像[M].北京:科学出版社,2006:196.
  • 7YORKEY T J, WEBSTER J G, TOMPKINS W J, et al. Comparing reconstruction algorithm for electrical impedance tomography [ J ]. IEEE Transactions on Biomedical Engineering, 1987, 34 (11): 843-852. 被引量:1
  • 8KAO T J, KIM B S, ISAACSON D, et al. Reducing boundary effects in statics EIT imaging [ J]. Physiological Measurement, 2006,27(5) : 13-23. 被引量:1
  • 9KENEDY J, EBERHART R. Particle optimization, neural networks [C ]// 1995 IEEE International Conference on Neural Networks, November 27-December 1, University of Western Australia, Perth, Australia. [S. l.]: Institute of Electrical & Electronics Engineer , 1995 : 1942-1948. 被引量:1
  • 10ZENG J C, JIE Q, CUN Z H. Particle swarm optimization algorithm[M]. Beijing: Science publishing Company, 2004. 被引量:1

二级参考文献52

共引文献22

同被引文献70

引证文献8

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部