期刊文献+

采用免疫进化算法优化设计径向基函数模糊神经网络控制器 被引量:10

Optimal design of radial basis function fuzzy neural network controllerbased on immune evolutionary algorithm
下载PDF
导出
摘要 基于生物免疫系统的计算智能近年来正逐渐成为一个研究热点.针对模糊神经网络控制器难于设计的问题,提出了一种免疫进化算法用于径向基函数模糊神经网络控制器参数的优化设计.首先将控制器参数进行编码表示成个体,并由若干随机个体组成初始群体;然后模拟生物适应性免疫应答过程,通过扩展操作在群体中较优秀个体的小邻域内进行局部搜索,同时利用突变操作在较差个体的大邻域内搜索;最后将设计的控制器用于控制倒立摆系统,仿真结果验证了该控制器的有效性. The computational intelligence based on biology immune system is becoming the focal point in recent years.Aiming at the design difficulty for fuzzy neural network controller,an immune evolutionary algorithm is proposed to design the parameters of a radial basis function fuzzy neural network controller.First,the parameters of the controller were encoded into an individual,and the initial population was composed of some random individuals; then,simulating the process of biology adaptive immune response,expansion operation was used to perform local searching in a small neighborhood of the better individuals in population,and mutation operation was used to search in a large neighborhood of the worse individuals.Finally,the designed controller was employed to control an inverted pendulum system,and the simulation results verified the effectiveness of the controller.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2004年第4期521-525,共5页 Control Theory & Applications
基金 国家自然科学基金项目(50138010) 哈尔滨工业大学跨学科交叉性研究基金项目(HIT.MD2001.02).
关键词 人工免疫系统 优化计算 径向基函数模糊神经网络 模糊控制 artificial immune system optimization computation radial basis function fuzzy neural network fuzzy control
  • 相关文献

参考文献8

  • 1李士勇编著..模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998:658.
  • 2SENG T L,KHALID M B,YUSOF R.Tuning of a neuro-fuzzycontroller by genetic algorithm[J].IEEE Trans on System,Man,andCybernetics, 1999, 29(2): 226-236. 被引量:1
  • 3韦巍,张国宏.人工免疫系统及其在控制系统中的应用[J].控制理论与应用,2002,19(2):157-160. 被引量:35
  • 4左兴权,李士勇,李远贵.人工免疫系统研究的新进展[J].计算机测量与控制,2002,10(11):701-705. 被引量:20
  • 5BEREK C,Ziegner M.The maturation of the immune response[J].Immunology Today, 1993,14(8): 400-402. 被引量:1
  • 6de CASTRO L N,Von ZUBEN F J.Learning and optimization using the clonal selection principle[J].IEEE Trans on Evolutionary Computation, 2002,6(3): 239-251. 被引量:1
  • 7GEORGE A T,Gray D.Receptor editing during affinity maturation[J].Immunology Today,1999,20(4):196. 被引量:1
  • 8HUNT K J,HAAS R,MURRAY-SMITH R.Extending the functional equivalence of radial basis function networks and fuzzy inference systems[J].IEEE Trans on Neural Networks, 1996,7(3): 776-781. 被引量:1

二级参考文献20

  • 1Farmer J D, Packard N H and Perelson A S. The immune system, adaptation,and machine learning [J].Physica D,1986,22:187-204 被引量:1
  • 2Mohler R T R. A system approach to immunology [J]. Proceedings of the IEEE, 1992,28(6):1083-1112 被引量:1
  • 3Jerne N K. Towards a network theory of the immune system [J]. Annual Immunolgy, 1974,125(C):373-389 被引量:1
  • 4Hoffmann G W. A neural network model based on the analogy with the immune system [J]. J. Theor. Biol., 1986,122(2):33-67 被引量:1
  • 5Dasgupta D and Forrest S. Artificial immune systems in industrial applications [A]. Proceedings of the Second Int. Conf. on Intelligent Processing and Manufacturing of Materials [C], Florida, USA, 1999:10-15,257-267 被引量:1
  • 6Perelson A S. Immune network theory [J]. Immunological Reviews, 1989,111(1):5-36 被引量:1
  • 7Hunt J E and Cooke D E. Learning using an artificial immune system [J]. J. of Network and Computer Appl., 1996,19(4):189-212 被引量:1
  • 8McCoy D F. Artificial immune systems and aerial image segmentation [A]. IEEE Int. Conf. Systems, Man and Cybernetics [C], Florida, USA, 1997,867-872 被引量:1
  • 9Timmis J, Neal M and Hunt J. An artificial immune system for data analysis [J]. Biosystems,2000,55(1):143-150 被引量:1
  • 10Ishida Y and Adachi N. Active noise control by an immune algori-thm: adaptation in immune system as an evolution [A]. Proc. International Conference on Evolutionary Computation [C], Nagoya, Japan, 1996 被引量:1

共引文献53

同被引文献66

引证文献10

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部