期刊文献+

基于质量权重的Savitzky-Golay时间序列滤波方法 被引量:31

VI-Quality-Based Savitzky-Golay Method for Filtering Time Series Data
原文传递
导出
摘要 归一化植被指数(NDVI)时间序列数据因含有大量噪声,给其应用带来诸多不便,甚至产生错误结果。自适应Savitzky-Golay滤波器能够有效地抑制突降噪声,但在对高值噪声的抑制和突降非噪声数据的保护方面存在不足。将MODIS VI产品中的质量因子作为权重,提出基于质量权重的Savitzky-Golay滤波方法,经验证该方法能够保持高质量NDVI数据的稳定性和相关性,并能够有效抑制噪声的影响。 NDVI time-series data contain disturbances that limit their use and even yield false results.Although the adaptive Savitzky-Golay method could effectively filter some sudden fall-noisy data which is assumed traditionally to be contaminated by clouds or poor atmosphere conditions,it cannot preserve some sudden fall data with good quality,and cannot suppress the sudden rise noisy data.Although maximum NDVI values greatly reduce clouds and aerosols,the highest NDVI value does not necessarily correspond to small sensor viewing angles or to the least-contaminated measurement.This paper presents a VI-quality-weighted Savitzky-Golay method which is based on the Savitzky-Golay filter and weighted by VI qualities derived from MODIS VI product.The results illustrate that the quality-weighted methods could filter more noises,especially sudden rise noisy data,effectively preserve high-quality data and meanwhile do not sensibly elevate the values of the whole time-series.It can appropriately fit high quality data among serious fluctuations and better reconstructs wave crests compared with the traditional Distance-weighted Savitzky-Golay method.Statistically,the proposed method here has the following characteristics:(1) it has lower mean variation(or less shift) effect on original NDVI data;(2) it stabilizes high quality NDVI data;and(3) the resulting high quality data are better correlated with original good data,meanwhile the original noise are greatly decorrelated.
作者 周增光 唐娉
出处 《遥感技术与应用》 CSCD 北大核心 2013年第2期232-239,共8页 Remote Sensing Technology and Application
基金 国家863计划项目子课题"全球遥感影像处理与数据集成研究"(2009AA122002)
关键词 NDVI 时间序列 滤波 质量 Savitzky-Golay NDVI Time series Filter Quality Savitzky-Golay
  • 相关文献

参考文献17

  • 1Sellers P J. Canopy Reflectance, Photosynthesis and Transpi- ration[J]. International Journal of Remote Sensing, 1985,6 1335-1372. 被引量:1
  • 2Cihlar J, Ly H, Li Z Q, et al. Multitemporal, Multichannel AVHRR Data Sets for Land Biosphere Studies Artifacts and Corrections[J]. Remote Sensing of Environment, 1997,60:35-57. 被引量:1
  • 3Gutman G G. Vegetation Indices from AVHRR: An Update and Future Prospects[J]. Remote Sensing of Environment, 1991,35 : 121-136. 被引量:1
  • 4Viovy N, Arino O, Belward A. The Best Index Slope Extrac-tion (BISE) : A Method for Reducing Noise in NDVI Time-se- ries[J]. International Journal of Remote Sensing, 1992, 13 (8) : 1585-1590. 被引量:1
  • 5Cihlar J. Identification of Contaminated Pixels in AVHRR Composite Images for Studies of Land Biosphere[J]. Remote Sensing of Environment, 1996,56 : 149-153. 被引量:1
  • 6Roerink G J, Menenti M, Verhoef W. Reconstructing Cloud- free NDVI Composites Using Fourier Analysis of Time Series [J]. International Journal of Remote Sensing, 2000,21 (9) : 1911-1917. 被引量:1
  • 7J6nsson P, Eklundh L. Seasonality Extraction by Function Fit- ting to Time-series of Satellite Sensor Data[J]. IEEE Trans- actions on Geoscience and Remote Sensing, 2002, 40 (8): 1824-1832. 被引量:1
  • 8Swets D L,Reed B C,Rowland J R,et al. A Weighted Least- squares Approach to Temporal Smoothing of NDVI[C]// 1999 ASPRS Annual Conference,from Image to Information, Portland, Oregon, 1999. 被引量:1
  • 9Chen J, J6nsson P, Tamura M,et 8l. A Simple Method for Re- constructing a High-quality NDVI Time-series Data Set based on the Savitzky-Golay Filter[J]. Remote Sensing of Environ- ment,2004,91:332-344. 被引量:1
  • 10Eklundh L,J6nsson P. Timesat 3.0 Software Manual[M]Lund : Lund University, 2009. 被引量:1

二级参考文献42

  • 1闫慧敏,曹明奎,刘纪远,庄大方,郭建坤,刘明亮.基于多时相遥感信息的中国农业种植制度空间格局研究[J].农业工程学报,2005,21(4):85-90. 被引量:69
  • 2顾娟,李新,黄春林.NDVI时间序列数据集重建方法述评[J].遥感技术与应用,2006,21(4):391-395. 被引量:86
  • 3Yong S S, Harris R. Changing Patterns of Global-scale Vegetation Photosynthesis, 1982-1999[J]. International Journal of Remote Sensing, 2005,26 (20): 4537-4563. 被引量:1
  • 4Christopher S R, Neigh B, et al. North American Vegetation Dynamics Observed with Multi-resolution Satellite Data[J]. Remote Sensing of Environment,2008,112(4) : 1749-1772. 被引量:1
  • 5Anyamba A,Tuker C J. Analysis of Sahelian Vegetation Dynamics Using NOAA-AVHRR NDVI Data from 1981-2003 [J]. Journal of Arid Environments,2005,63 (3):596-614. 被引量:1
  • 6Carreiras J, Pereira J, Shimabukuro Y, et al. Evaluation of Compositing Algorithms over the Brazilian Amazon Using SPOT-4 VEGETATION Data[J]. International Journal of Remote Sensing, 2003,24 (17): 3427-3440. 被引量:1
  • 7Kobayashi H, Dye D. Atmospheric Conditions for Monitoring the Long-term Dynamics in the Amazon Using Normalized Difference Vegetation Index[J]. Remote Sensing of Environ- ment,2005,97(4):519-525. 被引量:1
  • 8Goward S,Markham B, Dye D. Normalized Difference Vegetation Index Measurements from the Advanced Very High Resolution Radiometer[J]. Remote Sensing of Environment, 1991,35(2-3) : 257-277. 被引量:1
  • 9Gutman G, Vegetation Indices from AVHRR : An Update and Future Prospects[J]. Remote Sensing of Environment, 1991, 35(2-3) : 121-136. 被引量:1
  • 10Viovy N, Arino O, Belward A S. The Best Index Slope Extraction(B ISE) :A Method for Reducing Noise in NDVI Time Series[J]. International Journal of Remote Sensing, 1992,13:1585-1590. 被引量:1

共引文献100

同被引文献391

引证文献31

二级引证文献179

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部