期刊文献+

时序NDVI数据集重建综合方法研究 被引量:10

Integrated Reconstruction Methods of Time-series NDVI Dataset
原文传递
导出
摘要 时序NDVI数据集已经成功地应用于全球与区域环境变化、植被动态变化、土地覆盖变化和植物生物物理量参数反演等多方面的研究。时序NDVI数据集受到云和气溶胶等大气条件和传感器自身等因素的影响包含很多噪声,影响了其进一步的应用。基于对近几年来普遍使用的5种重建方法的对比分析结果,发展了基于标准差权重和噪声点性质的两种综合方法。以黑河流域2009年16 d最大值合成的MODIS NDVI数据为例,对比了两种综合方法与5种重建方法的效果;并用2009年5月下旬至8月上旬的地面实测NDVI数据验证了两种综合方法的重建效果。结果表明这两种综合方法的效果都优于对比的5种重建方法,它们既保留了原始数据中大部分的点,又最大限度地修正了噪声点,所生产的时序NDVI数据集,可以更好地用来开展全球与区域土地覆盖和植被动态变化监测等研究。 Time-series of Normalized Difference Vegetation Index(NDVI) datasets have been used in detecting the long-term vegetation cover changes in regional,continental or global scales.They are also successfully applied to extract the biophysical parameters of vegetation cover.Normally,there are quite frequently fluctuations because of atmospheric condition and sensor effect in the NDVI dataset.According to the comparative analysis of five widely used NDVI reconstruction algorithms,two integrated approaches were developed based on standard deviation weight and characteristics of noise points respectively.The reconstructed results were validated and assessed by using some in-suit NDVI measurements carried out during late May to early August,2009.The result shows that these two integrated methods are better than the five separate methods above.They do not only retain most of the original data,but also modify the noise to the utmost extent.NDVI time series datasets produced by these two approaches can be better applied in the researches on global and regional environmental change,vegetation dynamic,and so on.
出处 《遥感技术与应用》 CSCD 北大核心 2010年第6期891-896,共6页 Remote Sensing Technology and Application
基金 国家973计划项目(2009CB421305) 中国科学院西部行动计划(二期)项目(KZCX2-XB2-09-03)和中国科学院"西部之光"人才培养计划项目(CACXO728501001)联合资助
关键词 NDVI MODIS NDVI 时间序列数据集 重建 综合方法 NDVI MODIS NDVI Time series dataset Reconstruction Integrated method
  • 相关文献

参考文献16

  • 1赵英时等编著..遥感应用分析原理与方法[M].北京:科学出版社,2003:478.
  • 2马明国,王建,王雪梅.基于遥感的植被年际变化及其与气候关系研究进展[J].遥感学报,2006,10(3):421-431. 被引量:221
  • 3Carreiras J ,Pereira J, Shimabukuro Y, et al. Evaluation of Co- mpositing Algorithms over the Brazilian Amazon Using SPOT 4 VEGETATION Data [J]. International Journal of Remote Sensing, 2003,24(17) : 3427-3440. 被引量:1
  • 4Kobayashi H,Dye D. Atmospheric Conditions for Monitoring the Long-term Dynamics in the Amazon Using Normalized Difference Vegetation Index[J]. Remote Sensing of Environ- ment,2005,97(4) :519 -525. 被引量:1
  • 5Viovy N, Arino O, Belward A S. The Best Index Slope Ex -traction (BISE): A Method for Reducing Noise in NDVI Time-series[J]. International Journal of Remote Sensing, 1992,13(8):1585-1590. 被引量:1
  • 6Lovell J L, Graetz R D. Filtering Pathfinder AVHRR Land NDVI Data for Australia[J]. International Journal of Remote Sensing, 2001,22(13) : 2649-2654. 被引量:1
  • 7Ma M G,Veroustraete F. Reconstructing Pathfinder AVHRR Land NDVI Time series Data for the Northwest of China[J]. Advances in Space Research, 2006,37 (4):835-840. 被引量:1
  • 8Sellers P J,Los S O,Tucker C J,et al. A Revised Land Sur- face Parameterization (SiB2) for Atmospheric GCMs. Part 2: The Generation of Global Fields of Terrestrial Biophysical Pa- rameters from Satellite Data[J]. Journal of Climate, 1996,9 (4) ,706-737. 被引量:1
  • 9Chen J,Jonsson P,Tamura M,etal. A Simple Method for Re- constructing a High-quality NDVI Time-series Data Set based on the Savitzky-Golay Filter[J]. Remote Sensing of Environ- ment,2004,91(3-4) :332-344. 被引量:1
  • 10Jonsson P, Eklundh L. Seasonality Extraction by Function Fi tting to Time-Series of Satellite Sensor Data[J]. IEEE Trans- action on Geoscience and Remote Sensing,2002,40(8):1824- 1832. 被引量:1

二级参考文献44

共引文献306

同被引文献105

引证文献10

二级引证文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部