期刊文献+

基于局部敏感哈希算法的图像高维数据索引技术的研究 被引量:6

Research on High Dimension Image Data Indexing Technology Based on Locality Sensitive Hashing Algorithm
下载PDF
导出
摘要 局部敏感哈希(LSH)算法是有效的高维数据索引方法之一,该算法成功地解决了"维数灾难"问题。分析了LSH算法中主要参数对索引性能的影响,在规模不同的图像数据集上应用了LSH算法,实验结果表明选择合适的参数时,其性能接近顺序搜索方法。 Locality sensitive hashing (LSH) was quite an efficient high dimensional data indexing method, which solved the problem on "disaster of dimension". How the key parameters of LSH affect the performance of retrieval were analyzed, and LSH is also applied to different scale image datasets. The experimental results show that the performance of LSH is near to that of linear scan with the suitable parameters selected.
出处 《辽宁工业大学学报(自然科学版)》 2013年第1期1-3,共3页 Journal of Liaoning University of Technology(Natural Science Edition)
基金 国家自然科学基金项目(61272214) 辽宁工业大学教师科研启动基金(X201216)
关键词 高维数据索引 图像检索 局部敏感哈希算法 high data indexing image retrieval LSH algorithm
  • 相关文献

参考文献13

  • 1严蔚敏,吴伟民编著..数据结构 C语言版[M].北京:清华大学出版社,1997:334.
  • 2Guttman A. R-Trees: A Dynamic Index Structure for Spatial Searching[C]. In Proceedings of the ACM SIGMOD International Conference on Management of Data, 1984: 47-57. 被引量:1
  • 3Bentley J. Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9): 509-517. 被引量:1
  • 4Webber R, Schek H J, Blott S. A Quantitaitve Analysis and Performance Study for Similarity Search Methods in High Dimensional Spaces[C]. In Proceedings of the 24^th VLDB Conference, 1998: 194-205. 被引量:1
  • 5Datar M, Immorlica N, Indyk P. Locality sensitive hashing scheme based on p-stable distributions[C]. In Proceedings of the 20^th annual symposium on Computational Geometry, 2004: 253-262. 被引量:1
  • 6何周灿,王庆,杨恒.一种面向快速图像匹配的扩展LSH算法[J].四川大学学报(自然科学版),2010,47(2):269-274. 被引量:8
  • 7Loris, Narmi, Alessardra Lumini. Random Subspace for an improved BioHashing for face authentication[J]. Pattern Recognition Letters, 2008, 29(3): 295-300. 被引量:1
  • 8Kullis B, Grauman K, Kernelized Locality Sensitive Hashing for Scalable Image Search[C]. In Proceedings of the International Conference on Computer Vision, 2010: 2130-2137. 被引量:1
  • 9曹玉东..图像检索中的特征表示和索引方法的研究[D].北京邮电大学,2011:
  • 10Kim H, chang H W, Lee J. BASIL: Effective Near- duplicate Image detection using Gene Sequence Alignment[C]. In Proceedings of the 32na European Conference on IR Research, Advances in Information Retrieval Lecture Notes in Computer Science, 2010: 229-240. 被引量:1

二级参考文献15

  • 1卢炎生,饶祺.一种LSH索引的自动参数调整方法[J].华中科技大学学报(自然科学版),2006,34(11):38-40. 被引量:6
  • 2王国仁,黄健美,王斌,韩东红,乔百友,于戈.基于最大间隙空间映射的高维数据索引技术[J].软件学报,2007,18(6):1419-1428. 被引量:9
  • 3Lowe D G.Distinctive image features from scale-invariant key points[J].International Journal of Computer Vision,2004,60(4):91. 被引量:1
  • 4Dusan O,Ondrej D,Ales L.High-dimensional feature matching:employing the concept of meaningful nearest neighbors[C].Washington,DC,USA:IEEE Computer Society Press,2007. 被引量:1
  • 5Beis J S,Lowe D G.Shape indexing using approximate nearest-neighbor search in high-dimensional spaces[C].Washington,DC,USA:IEEE Computer Society Press,1997. 被引量:1
  • 6Jagadish H V,Beng C O,Kian L T,et al.iDistance:an adaptive B+tree based indexing method for nearest neighbor search[J].ACM Transactions on Data Base Systems,2005,30(2):364. 被引量:1
  • 7Piotr I,Rajeev M.Approximate nearest neighbors towards removing the curse of dimensionality[C].New York,USA:ACM press,1998. 被引量:1
  • 8Aristides G,Piotr I,Rajeev M.Similarity search in high dimensions via hashing[C].San Francisco:Morgan Kaufmann Publishers,1999. 被引量:1
  • 9Yan K,Rahul S,Larry H.An efficient parts-based near-duplicate and sub-image retrieval system[C].New York,USA:ACM press,2004. 被引量:1
  • 10Krystian M.Image database[EB/OL].(2003-09-28).[2009-01-21].http://lear.inrialpes.fr/people/Mikolajczyk. 被引量:1

共引文献7

同被引文献65

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部