期刊文献+

一种基于子空间聚类的图像分层索引方法 被引量:1

An Approach of Hierarchical Image Index Based on Subspace Cluster
下载PDF
导出
摘要 随着多媒体技术的发展,许多领域产生大量的高维数据集。为了有效地检索这些高维数据,高维索引成为人们研究的热点。聚类树是一种有效地支持高维数据检索的索引结构。提出了一种基于子空间聚类的聚类树结构,该索引结构基于一种改进的CLIQUE聚类算法,利用小波变换的多尺度特性对图像特征分布曲线进行不同尺度的小波变换,去除一些小的分类和可能的噪声干扰,从而得到不同粒度下的层次聚类。在层次聚类的基础上,建立起分层索引结构。由于改进的聚类算法使用爬山法确定子空间聚类,因而有效地避免了用户参数的定义。实验结果证明,该方法在不需要用户设定聚类参数下能够进行有效聚类,在不同尺度下构建的聚类结构能够有效地组织图像关系,大大提高图像的检索效率。 Nowadays large volumes of data with high dimensionality are being generated in many fields. Many approaches have been proposed to index high-dimensional datasets for efficient querying. ClusterTree is a new indexing approach representing clusters generated by any existing clustering approach. Lots of clustering algorithms have been developed, and in most of them some parameters should be determined manually. The authors propose a new subspace-eluster indexing algorithm, which based on the improved CLIQUE and avoids bias on any parameters caused by user. Using multi-resolution property of wavelet transforms to reprocess the distribution curve of samples, the proposed approach can cluster at different resolution and remain the relation between these clusters to construct hierarchical index. The results of the experiment confirm that the subspace-cluster algorithm is very applicable and efficient, and show that this hierarchical indexing structure does well in the content-based image retrieval.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第1期142-147,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60602030)
关键词 基于内容图像检索 高维数据索引 子空间聚类 聚类树 content-based image retrieval, high-dimensional data index, subspace cluster, cluster tree
  • 相关文献

参考文献10

  • 1Yu Dantong, Zhang Aidong. ClusterTree: integration of cluster representation and nearest-neighbor search for large data sets with high dimensions[J].IEEE Transactions on Knowledge and Data Engineering, 2003, 15(5) :1316-1337. 被引量:1
  • 2Zhang Tian, Raghu Ramakrishnan, Miron Livny. BIRCH: An efficient data clustering method for very large databases [ A]. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data[C]. Montreal, Canada, 1996: 103-114. 被引量:1
  • 3Guha S, Rastogi R, Shim K. CURE : an efficient clustering algorithm for large databases [ A ]. In: Proceedings of the ACM SIGMOD International Conference on Management of Data[ C] , Seattle, USA, 1998 ~ 73-84. 被引量:1
  • 4Ester M, Kriegel H, Sander J, et al. A density-based algorithm for disco'lering clusters in large spatial databases with noise [ A ]. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining 1996 [ C ], Portland, USA, 1996 : 226-231. 被引量:1
  • 5Hinneburg A, Keim D. An efficient approach to clustering in large multimedia databases with noise [ A].In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining [C], New York, USA, 1998: 58-65. 被引量:1
  • 6Wang W, Yang J, Muntz R R. STING: A statistical information grid approach to spatial data mining [ A ]. In: Proceedings of the 23rd International Conference on Very Large Data Bases [ C ], Athens, Greece, 1997: 186-195. 被引量:1
  • 7Sheikholeslami G, Chatterjee S, Zhang A D. WaveCluster: A multiresolution clustering approach for very large spatial databases [ A ]. In: Proceedings of the 24th International Conference on Very Large Data Bases[C] , New York, USA, 1998: 428-439. 被引量:1
  • 8Rakesh A, Johanners G, Dimitrios G, Prabhakar R. Automatic subspaee clustering of high dimensional data for data mining applications [ A ]. In: Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data[ C ], Minneapolis, USA, 1994:94-105. 被引量:1
  • 9王建会,申展,胡运发.一种实用高效的聚类算法[J].软件学报,2004,15(5):697-705. 被引量:26
  • 10Goil S, Nagesh H, Choudhary A. MAFIA: Efficient and Scalable Subspace Clustering Clustering for Very Large Data Sets [ R ]. TR- 9906-010,Illinois, USA:Northwestern University, 1999. 被引量:1

二级参考文献2

共引文献25

同被引文献74

  • 1李道国,苗夺谦,张东星,张红云.粒度计算研究综述[J].计算机科学,2005,32(9):1-12. 被引量:54
  • 2刘仁金,黄贤武.图像分割的商空间粒度原理[J].计算机学报,2005,28(10):1680-1685. 被引量:23
  • 3李清勇,胡宏,施智平,史忠植.基于纹理语义特征的图像检索研究[J].计算机学报,2006,29(1):116-123. 被引量:25
  • 4张向荣,谭山,焦李成.基于商空间粒度计算的SAR图像分类[J].计算机学报,2007,30(3):483-490. 被引量:21
  • 5Datta R, Joshi D, Li J, Wang J Z. Image retrieval: ideas, influences, and trends of the new age. ACM Computing Sur- veys, 2008, 40(2): 1-60. 被引量:1
  • 6Zadeh L A. Fuzzy sets and information granularity. Ad- vances in Fuzzy Set Theory and Applications. Amsterdam: North-Holland Publishing, 1979. 3-18. 被引量:1
  • 7Yavlinsky A, Schofield E, Ruger S. Automated image an- notation using global features and robust nonparametric density estimation. In: Proceedings of the 4th International Conference on Image and Video Retrieval. Singapore, Sin- gapore: Springer, 2005. 507-517. 被引量:1
  • 8Feng S L, Manmatha R, Lavrenko V. Multiple Bernoulli rel- evance models for image and video annotation. In: Proceed- ings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2004. 1002-1009. 被引量:1
  • 9Bi J, Chen Y, Wang J Z. A sparse support vector machine approach to region-based image categorization. In: Proceed- ings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 1121-1128. 被引量:1
  • 10Zhang Q, Goldman S A, Yu W, Fritts J. Content-based im- age retrieval using multiple-instance learning. In: Proceed- ings of the 19th International Conference on Machine Learn- ing. Sydney, Australia: Morgan Kaufmann, 2002. 682-689. 被引量:1

引证文献1

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部