期刊文献+

基于E^2LSH-MKL的视觉语义概念检测 被引量:3

A Visual Semantic Concept Detection Algorithm Based on E^2LSH-MKL
下载PDF
导出
摘要 多核学习方法(Multiple kernel learning,MKL)在视觉语义概念检测中有广泛应用,但传统多核学习大都采用线性平稳的核组合方式而无法准确刻画复杂的数据分布.本文将精确欧氏空间位置敏感哈希(Exact Euclidean locality sensitivehashing,E2LSH)算法用于聚类,结合非线性多核组合方法的优势,提出一种非线性非平稳的多核组合方法-E2LSH-MKL.该方法利用Hadamard内积实现对不同核函数的非线性加权,充分利用了不同核函数之间交互得到的信息;同时利用基于E2LSH哈希原理的聚类算法,先将原始图像数据集哈希聚类为若干图像子集,再根据不同核函数对各图像子集的相对贡献大小赋予各自不同的核权重,从而实现多核的非平稳加权以提高学习器性能;最后,把E2LSH-MKL应用于视觉语义概念检测.在Caltech-256和TRECVID2005数据集上的实验结果表明,新方法性能优于现有的几种多核学习方法. Multiple kernel learning (MKL) methods have a widespread application in visual semantic concept detection. Most canonical MKL approaches employ a linear and stationary kernel combination format which cannot accurately depict complex data distributions. In this paper, we apply exact Euclidean locality sensitive hashing (E2LSH) algorithm to clustering. And by combining the advantages of nonlinear multiple kernel combination methods, we put forward a nonlinear and non-stationary multiple kernel learning method- E2LSH-MKL. In order to make full use of the information generated from the nonlinear interaction of different kernels, this method utilizes Hadamard product to realize nonlinear combination of multiple different kernels. Meanwhile, the method employs E2LSH-based clustering algorithm to group images into sub clusters, then assigns cluster-related kernel weights according to relative contributions of different kernels on each image subset, thereby realizing non-stationary weighting of multiple kernels to improve learning performance; finally, E2LSH-MKL is applied to visual semantic concept detection. Experiment results on datasets of the Caltech- 256 and the TRECVID 2005 show that the proposed method is superior to the state-of-the-art multiple kernel learning methods.
出处 《自动化学报》 EI CSCD 北大核心 2012年第10期1671-1678,共8页 Acta Automatica Sinica
基金 国家自然科学基金(60872142)资助~~
关键词 视觉语义概念 多核学习 精确欧氏空间位置敏感哈希算法 Hadamard内积 Visual semantic concept multiple kernel learning (MKL) exact Euclidean locality sensitive Hashing (E2LSH) Hadamard product
  • 相关文献

参考文献27

  • 1张素兰,郭平,张继福,胡立华.图像语义自动标注及其粒度分析方法[J].自动化学报,2012,38(5):688-697. 被引量:20
  • 2李文清,孙新,张常有,冯烨.一种本体概念的语义相似度计算方法[J].自动化学报,2012,38(2):229-235. 被引量:45
  • 3Damoulas T, Girolami M A. Pattern recognition with a Bayesian kernel combination machine. Pattern Recognition Letters, 2009, 30(1): 46-54. 被引量:1
  • 4Vedaldi A, Gulshan V, Varma M, Zisserman A. Multiple kernels for object detection. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE. 2009, 606-613. 被引量:1
  • 5Yang J J, Li Y N, Tian Y H, Duan L Y, Gao W. Per-sample multiple kernel approach for visual concept learning. Journal on Image and Video Processing. 2010, 2010(2): 220-232. 被引量:1
  • 6Bach F R, Lanckriet G R, Jordan M I. Multiple kernel learn- ing, conic duality, and the SMO algorithm. In: Proceed- ings of the 21st IEEE International Conference on Machine Learning. New York, USA: ACM, 2004. 41-48. 被引量:1
  • 7Varma M, Ray D. Learning the discriminative power- invariance trade-off. In: Proceedings of the 11th IEEE In- ternational Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE. 2007. 1-8. 被引量:1
  • 8Kumar A, Sminchisescu C. Support kernel machines for ob- ject recognition. In: Proceedings of the 11th IEEE Inter- national Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8. 被引量:1
  • 9Scholkopf B, Burges C J C, Smola A J. Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press, 1998. 185-208. 被引量:1
  • 10汪洪桥,孙富春,蔡艳宁,陈宁,丁林阁.多核学习方法[J].自动化学报,2010,36(8):1037-1050. 被引量:156

二级参考文献139

共引文献269

同被引文献41

  • 1SIVIC J and ZISSERMAN A. Video Google: a text retrieval approach to object matching in videos[C]. Proceedings of 9th IEEE International Conference on Computer Vision, Nice, France, 2003: 1470-1477. 被引量:1
  • 2CHEN Y Z, Dick A, LI X, et al. Spatially aware feature selection and weighting for object retrieval[J]. Image and Vision Computing, 2013, 31(6): 935-948. 被引量:1
  • 3WANG J Y, Bensmail H, and GAO X. Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification[J]. Pattern Recognition, 2013, 46(3): 3249-3255. 被引量:1
  • 4OT?VIO A, PENATTI B, FERNANDA B S, et al. Visual word spatial arrangement for image retrieval and classification[J]. Pattern Recognition, 2014, 47(1): 705-720. 被引量:1
  • 5LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 被引量:1
  • 6VAN GEMERT J C, VEENMAN C J, SMEULDERS A W M, et al. Visual word ambiguity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1271-1283. 被引量:1
  • 7NISTER D and STEWENIUS H. Scalable recognition with a vocabulary tree[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2006: 2161-2168. 被引量:1
  • 8PHILBIN J, CHUM O, ISARD M, et al. Object retrieval with large vocabularies and fast spatial matching[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1-8. 被引量:1
  • 9MU Y D, SUN J, and YAN S C. Randomized locality sensitive vocabularies for bag-of-features model[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 1-14. 被引量:1
  • 10CAO Yiqun, JIANG Tao, and THOMAS G. Accelerated similarity searching and clustering of large compound sets by geometric embedding and locality sensitive hashing[J]. Bioinformatics, 2010, 26(7): 953-959. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部