期刊文献+

局部敏感哈希在高维向量K近邻搜索中的应用 被引量:1

Locality-sensitive Hashing for the Application of K-Nearest Neighbor Search in High Demensions
下载PDF
导出
摘要 在图片相似性搜索中,需要将图片特征向量的相似性搜索问题转化为K近邻问题,这就需要了解K近邻问题的定义,以及局部敏感哈希的数学定义。此外,还需引入一个可以用于实际应用的局部敏感哈希的算法,并分析此算法的正确率和算法复杂度。 To solve the image similarity identification problem, the similarity search of feature vector must be converted to K- Near- est Neighbor problem. K- Nearest Neighbor problem is then introduced, and then the mathematical definition of Locality- sensitive Hashing is introduced. An applied algorithm of Locality- sensitive Hashing was described, with the analysis of the rate of accuracy and time complexity.
作者 张亮 谢晓尧
出处 《上饶师范学院学报》 2013年第6期76-79,共4页 Journal of Shangrao Normal University
关键词 LSH K近邻 高维向量 搜索 LSH K- Nearest Neighbor High Demensions Search
  • 相关文献

参考文献7

  • 1P. Indyk and R. Motwani . Approximate nearest neighbors: towards remo-\ing the curse of dimensionality[ A], In STOC,98: Proceedingsof the thirtieth annual ACM symposium on Theory of computing, New York, USA: ACM Press, 1998:604 .613 . 被引量:1
  • 2Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hashing[A] . In VLDB ,99: Proceedings ofthe 25th International Conference on Very Large Data Bases[C],San Francisco, CA, USA: Morgan Kaufinann Publishers Inc. 1999:518-529. 被引量:1
  • 3曹玉东,刘福英,蔡希彪.基于局部敏感哈希算法的图像高维数据索引技术的研究[J].辽宁工业大学学报(自然科学版),2013,33(1):1-3. 被引量:6
  • 4夏宇,朱欣焰.高维空间数据索引技术研究[J].测绘科学,2009,34(1):60-62. 被引量:6
  • 5Alexandr Andoni. Nearest Neighbor Search: the Old, the New, and the Impossible[D]. Massachusetts Institute of Technology,2009. 被引量:1
  • 6M. Datar, N. Immorlica, P. Indyk, and V. S. Minokni. Locality - sensitive hashing scheme based on p - stable distributionsf A] . InSCG *04: Proceedings of the twentieth annual symposium on Computational geometry[C] , New York, USA: ACM Press, 2004:253 .262. 被引量:1
  • 7Wei Dong, Zhe Wang, William Josephson, Moses Charikar, Kai Li. Modeling LSH for Performance Tuning[A]. Proceedings of the 17thConference on Infoimation and Knowledge Management[C]. Napa Valley, CA, USA: Information Retrieval Facility, 2008:669 - 678. 被引量:1

二级参考文献17

  • 1Christian Bohm.Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases [J] . ACM Computing Surveys, 2001, 33(3) . 被引量:1
  • 2Christian M. Garcia-Arellano. Quantization Techniques for Similarity Search in High-Dimensional Data Spaces [ D] . Ph. D thesis. Toronto : University of Toronto. 2002. 被引量:1
  • 3Gonzalo Navarro. Searching in metric spaces by spatial approximation [J] . The VLDB Journal 2002, 11 : 28-46. 被引量:1
  • 4Jinhua Li. Efficient similarity search based on data distribution properties in high dimensions [ D ] . Ph. D thesis. Michigan: Michigan State University. 2001. 被引量:1
  • 5R. Weber, H. J. Scheck, S. Blott. A quantitative analysis and performance study for similarity search in high dimensional spaces [ C ] //Proceedings of the 24th International Conference on Very Large Data Bases (VLDB'98), NewYork, USA, 1998: 194-205. 被引量:1
  • 6Stefan Berchtold, Christian Bohm, H V Jagadish. Independent Quantization: An Index Compression Technique for High-Dimensional Data Spaces [C]// San Diego: Proc. of the 16th Int. Conf. on Data Engineering ( ICDE '00) , Ca California: IEEE Computer Science Society Press. California, USA 2000: 577 -588. 被引量:1
  • 7Guttman A. R-Trees: A Dynamic Index Structure for Spatial Searching[C]. In Proceedings of the ACM SIGMOD International Conference on Management of Data, 1984: 47-57. 被引量:1
  • 8Bentley J. Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9): 509-517. 被引量:1
  • 9Webber R, Schek H J, Blott S. A Quantitaitve Analysis and Performance Study for Similarity Search Methods in High Dimensional Spaces[C]. In Proceedings of the 24^th VLDB Conference, 1998: 194-205. 被引量:1
  • 10Datar M, Immorlica N, Indyk P. Locality sensitive hashing scheme based on p-stable distributions[C]. In Proceedings of the 20^th annual symposium on Computational Geometry, 2004: 253-262. 被引量:1

共引文献10

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部