期刊文献+

一种基于CUDA的局部敏感哈希算法 被引量:1

A Locality Sensitive Hashing Algorithm Based on CUDA
下载PDF
导出
摘要 传统的局部敏感哈希算法建立哈希表时往往需要较大的内存空间以及较长的建立时间.在查询阶段,查询样本K个最近邻数据项的所需时间超过整个运行时间的95%.针对这些问题,运用计算设备架构将局部敏感哈希算法移植至图形处理器,并用多线程并行计算数据项的哈希值来建立哈希表.查询阶段在全局内存中引入基于工作队列的多样本查询,以提高算法的运行效率.实验结果表明,所提出的算法与传统的局部敏感哈希算法相比,能在不降低运算精度的情况下将运算速度提高近12倍. The traditional locality sensitive hashing (LSH) algorithm often takes a large memory space and long settling time to build a hash table. In the query phase, it takes more than 95% of the overall running time to search K nearest neighbor data items of samples. To solve these problems, this paper uses the compute unified device architecture (CUDA) to transplant LSH algorithm into a GPU, using parallel multi-threads to calculate the values of data items to build the hash table. In the query phase, we introduce multi- sample query based on work queue to global memory to improve efficiency of the algorithm. Experimental results show that computing speed of the proposed LSH algorithm is 12 times faster than the traditional LSH algorithm.
出处 《应用科学学报》 CAS CSCD 北大核心 2015年第5期550-558,共9页 Journal of Applied Sciences
基金 国家"863"高技术研究发展计划基金(No.2013AA01A603) 上海市教育委员会科研创新项目基金(No.14YZ011)资助
关键词 计算设备架构 图形处理器 局部敏感哈希 K最近邻 compute unified device architecture (CUDA); graphics processing unit (GPU);locality sensitive hashing; K-nearest neighbor
  • 相关文献

参考文献15

  • 1凌康..基于位置敏感哈希的相似性搜索技术研究[D].南京大学,2012:
  • 2DONKIN D. Multidimensional search problem [J]. Siam Journal on Computing, 1976, 5(2): 181- 186. 被引量:1
  • 3YEH T, LEE J, DARRELL W. Adaptive vocabulary forests br dynamic indexing and category learning [C]//Proceedings of the llth IEEE International Conference on Computer Vision Rio de Janeiro, 2007. Washington, DC, USA: IEEE Computer Society, 2007: 1-8. 被引量:1
  • 4INDYK P, MOTWANI R. Approximate nearest neighbors: towards removing the curse of dimen- sionality [C]//Proceedings of 30th ACM Symposium on Theory of Computing. New York, USA, 1998: 604-613. 被引量:1
  • 5GIONIS A, INDYK P. Similarity search in high dimensions via hashing [C]//Proceedings of the 25th International Conference on Very Large Data Bases, Edinburgh, UK, 1999: 518-529. 被引量:1
  • 6Wu Y, SHOu L D, CgEN G. CB-LSH: an efficient LSH indexing algorithm based on compressed bitmap [J]. Journal of Zhejiang University, 2012, 3(46): 376-385. 被引量:1
  • 7YIN S Y, BADR M, VODISLAV D. Dynamic for approximate nearest neighbor search [J]. 48-62. multi-probe LSH: an I/O efficient index structure Lecture Notes in Computer Science, 2013, 1(8055). 被引量:1
  • 8Gu X G, ZHANG Y D, ZHANG L. An improved method of locality sensitive hashing for indexing large-scale and high-dimensional features [J]. Signal Processing, 2013, 93(8): 2244-2255. 被引量:1
  • 9JIANG K, QUE Q C, KULIS B. Revisiting kernelized locality-sensitive hashing for improved large- scale image retrieval [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2014. 被引量:1
  • 10雷德川..基于CUDA的GPU加速迭代重建算法研究[D].中国工程物理研究院,2012:

二级参考文献17

  • 1INDYK P,MOTWANI R.Approximate nearest neighbors:Towards removing the curse of dimensionality[C].Pro-ceedings of 30th ACM Symposium on Theory ofComputing.New York,USA,1998.604-613. 被引量:1
  • 2GIONIS AI,NDYK P,MOTWANI R.Similarity search inhigh dimensions via hashing[C].Proceedings of the 25thInternational Conference on Very Large Data Bases,Edin-burgh,UK,1999.518-529. 被引量:1
  • 3CHARIKAR M.Similarity Estimation Techniques fromRounding Algorithms[C].ACM Symposium on Theory ofComputing,2002. 被引量:1
  • 4DATAR M,IMMORLICA N,INDYK P,et al.Locality-Sensitive Hashing Scheme Based on p-Stable Distributions[C].Proceedings of the 20th ACM Symposium on Com-putational Geometry(SOCG),2004:253-262. 被引量:1
  • 5GRAUMAN K,DARRELL T.Pyramid Match Hashing:Sub-Linear Time Indexing Over Partial Correspondences[C].IEEE Conference on Computer Vision and PatternRecognition(CVPR),2007:1-8. 被引量:1
  • 6JAIN P,KULIS B,GRAUMAN K.Fast Image Search forLearned Metrics[C].IEEE Conference on ComputerVision and Pattern Recognition(CVPR),2008:1-8. 被引量:1
  • 7INDYK P.Stable Distributions,PseudorandomGenerators,Embeddings,and Data Stream Computation[C].Proceedings.41st IEEE Symposium on Foundationsof Computer Science,2000:189-197. 被引量:1
  • 8JING Y S,BALUJA S.VisualRank:Applying PageRankto Large-Scale Image Search[J].IEEE Transactions onPattern Analysis and Machine Intelligence.2008,30(11):1877-1890. 被引量:1
  • 9RYYNNEN M,KLAPURI A.Query by humming ofmidi and audio using locality sensitive hashing[C].2008IEEE International Conference on Acoustics,Speech andSignal Processing,Las Vegas,Nevada,USA,2008.2249-2252. 被引量:1
  • 10BALUJA S,COVELL M,IOFFE S.Permutationgrouping:intelligent Hash function design for audio&image retrieval[C].IEEE International Conference onAcoustics,Speech and Signal Processing,Las Vegas,Nevada,USA,2008.2137-2140. 被引量:1

共引文献2

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部