摘要
针对机动目标当前统计模型自适应跟踪算法的加速度方差依赖于预先设定的加速度极值的问题,研究新的加速度方差调整方法。在机动目标当前统计模型的基础上,根据雷达实时观测信息,利用加速度扰动与位置变化量之间的物理关系,采用一种新的机动目标当前统计模型加速度方差自适应跟踪方法。仿真结果表明,新算法对高机动目标、一般机动目标均具有较高的跟踪精度,从而验证了新算法的正确性和有效性,对机动目标跟踪问题具有一定的实际应用价值。
Aiming at the problem that acceleration variance of maneuvering target depends on previously assumed acceleration extreme value in adaptive tracking algorithm of current statistical model, this paper researched a new cal- culation method of acceleration variance. This paper put forward an improved acceleration variance adaptive algorithm of maneuvering target current statistical model, which uses Radar real time observational information based on maneu- vering target tracking current statistical model. The simulation shows that new algorithm has better tracking precision for high maneuvering target and general maneuvering target. The validity of the new algorithm was proved; and new algorithm has some practical application value for maneuvering target tracking.
出处
《计算机仿真》
CSCD
北大核心
2013年第3期42-44,58,共4页
Computer Simulation
关键词
当前统计模型
机动目标跟踪
加速度方差
自适应滤波
Current statistical model
Maneuvering target tracking
Acceleration variance
Adaptive filtering