期刊文献+

基于高斯混合容积卡尔曼滤波的UUV自主导航定位算法 被引量:24

Gaussian mixture cubature Kalman filter based autonomous navigation and localization algorithm for UUV
下载PDF
导出
摘要 针对过程噪声为非理想高斯分布时无人水下航行器(UUV)自主导航定位存在噪声模型失配的问题,将高斯混合密度模型与容积卡尔曼滤波(CKF)相结合,设计了基于高斯混合容积卡尔曼滤波(GM-CKF)的UUV导航定位算法。建立了UUV运动模型及观测模型,利用CKF完成各高斯分量的预测更新,并将更新结果进行融合缩减与加权求和,从而实现UUV自主导航定位。通过与EKF、UKF和CKF算法仿真对比实验,验证了GM-CKF可以提高估计精度;通过UUV湖试试验,验证了基于GM-CKF的UUV自主导航定位精度和稳定性优于传统算法,其计算时间满足实时导航定位的要求。 Aiming at the problem of mismatched noise model of autonomous navigation of unmanned underwater vehicle( UUV) with non-ideal Gaussian distribution noise,the Gaussian mixture cubature Kalman filter( GM-CKF) based navigation algorithm of UUV is designed through combining the Gaussian mixture density distribution model with CKF.The motion model and observation model of UUV are established;the Gaussian components are predicted and updated with CKF;the results are merged and weighted,and the autonomous navigation and localization of UUV is realized.The simulation comparison experiments with EKF,UKF and CKF algorithms were conducted,which prove that the GM-CKF algorithm could improve the estimation precision.The UUV lake trial experiment was also conducted,and the result indicates that the proposed GM-CKF algorithm can provide better accuracy and stability than conventional navigation algorithms,and the computation time satisfies the requirement of real time navigation and localization of UUV.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第2期254-261,共8页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(E091002/50979017 E091002/51309067) 教育部高等学校博士学科点专项科研基金(20092304110008) 哈尔滨市科技创新人才(优秀学科带头人)研究专项资金(2012RFXXG083)资助项目
关键词 无人水下航行器 导航定位 高斯混合密度模型 容积卡尔曼滤波 UUV navigation and localization gaussian mixture approximation CKF
  • 相关文献

参考文献21

  • 1刘国海,李沁雪,施维,李康吉.动态卡尔曼滤波在导航试验状态估计中的应用[J].仪器仪表学报,2009,30(2):396-400. 被引量:48
  • 2王建平,徐恒,李奇越.基于卡尔曼滤波的矿井移动节点定位算法研究[J].电子测量与仪器学报,2013,27(2):120-126. 被引量:44
  • 3THRUN S,LIU Y,KOLLER D,et al.Simultaneous lo-calization and mapping with sparse extended informationfilters[J].International Journal of Robotics Research,2004,23(7/8):693-716. 被引量:1
  • 4JUUER S J,UHLMANN J K,DURRANT WHYTEN H F.A new method for the nonlinear transformation of means andcovariances in filters and estimators[J].IEEE Trans,onAutomatic Control,2000,45(3):477-482. 被引量:1
  • 5王晓东,贾继鹏.一种基于IMMPDA-UKF的机动目标跟踪算法[J].电子测量技术,2014,37(10):5-8. 被引量:9
  • 6SIMANDL M,DUNIK J.Derivative free estimation meth-ods:New results and performance analysis[J].Automat-ica,2009,45(7):1749-1757. 被引量:1
  • 7DOUCET A,DE FREITAS N,MURPHY K,et al.Rao-Blackwellised particle filtering for dynamic Bayesian net-works[C].16th Conference on Uncertainty in ArtificialIntelligence.San Francisco,Cam USA:Morgan Kauf-mann Pubishers,2000:176-183. 被引量:1
  • 8ARASARATNAM I,HAYKIN S.Cubature Kalmanfilters[J].IEEE Transactions on Automatic Control,2009,54(6):1254-1269. 被引量:1
  • 9DHITAL A.Bayesian filtering for dynamic systems withapplications to tracking[D].Barcelona,Spain:Univer-sitat Politecnica de Ctalunya,2010. 被引量:1
  • 10JIA B,XIN M,CHENG Y.High-degree cubature Kal-man filter[J].Automatic,2013,49:510-518. 被引量:1

二级参考文献87

  • 1谢恺,金波,周一宇.基于迭代测量更新的UKF方法[J].华中科技大学学报(自然科学版),2007,35(11):13-15. 被引量:7
  • 2万德均,房建成,王庆.GPS动态滤波的理论、方法及其应用[M].南京:江苏科学技术出版社,2000. 被引量:2
  • 3HAYTHAM Q, LEONHARD R. Unscented and extended Kalman estimators for non-linear indoor tracking using distance measurements [J]. Positioning Navigation and Communication, 2007 ( 3 ) : 177-181. 被引量:1
  • 4WAN E A, VAN DER MERWE R. The unscented Kalman filter for nonlinear estimation [ J ]. Adaptive Systems for Signal Processing, Communications and Control Symposium, 2000 : 153-158. 被引量:1
  • 5VAN DER MERWE R, WAN E A. The square-root unscented kalman filter for state and parameter estimation [J ]. Acoustics, Speech and Signal Processing Proceedings, 2001,6:3461-3464. 被引量:1
  • 6GORDON N, SALMOND D J, SMITH A F M. Novel approach to nonlinear and non-Gaussian Bayesian state estimarion [ J ]. IEEE Proceedings- F, 1993, 140 (2) : 107-113. 被引量:1
  • 7LIU SH L. Single observer passive location using phase rate of change with the modified UKF [ J ]. Communications, Circuits and Systems Proceedings, 2006, 1: 311-314. 被引量:1
  • 8SIMANDL M, DUNIIK J, KRAL L. Derivative-free estimation methods: new results and performance analysis [R]. PlzeN: 2007:35-39. 被引量:1
  • 9朱剑,赵海,孙佩刚,毕远国.基于RSSI均值的等边三角形定位算法[J].东北大学学报(自然科学版),2007,28(8):1094-1097. 被引量:76
  • 10Arulampalam S, Askell S, Gordom N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].IEEE Trans. on Signal Processing,2002,50(2) :174 - 188. 被引量:1

共引文献186

同被引文献275

引证文献24

二级引证文献229

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部