期刊文献+

分布式自适应多传感器多目标跟踪算法 被引量:6

Distributed adaptive multi-sensor multi-target tracking algorithm
下载PDF
导出
摘要 为了有效提高复杂环境下的船舶多目标跟踪系统的跟踪性能,提出了一种分布式自适应多传感器多目标跟踪算法。针对分布式融合结构设计了一种在线估计的自适应分配信息系数的方法,将自适应分配算法和动态权值分配算法相结合,实现在线自适应权值分配算法,以解决融合航迹误差低和不稳定性问题。对系统进行建模与分析,对提出的分布式自适应多传感器多目标跟踪算法进行了公式推导。通过仿真表明,改进的自适应算法估计精度提高了20%,同时该方法能够提高多目标跟踪系统稳健性。 A distributed adaptive multi-sensor multi-target tracking algorithm was proposed to improve the tracking performance of a ship's multi-target tracking system in complex environments. According to the distributed fusion structure, an online adaptive estimation method of information distribution coefficients was designed which combined the adaptive allocation algorithm with the dynamic weight assignment algorithm and realized an online adaptive dynamic weight assignment algorithm to overcome the fusion track's large error and unstable problem. The working principle of the distributed multi-sensor and multi-target tracking system was described, the modeling and analysis of the system was presented, and the adaptive fusion algorithm was derived. Simulation results show that the estimation precision of the proposed adaptive fusion algorithm is increased by 20%. The proposed method can also improve the robustness of the multi-target tracking system.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2015年第4期472-476,共5页 Journal of Chinese Inertial Technology
基金 福建省自然科学基金项目(2013J01203) 厦门市科技计划项目(3502Z20130005) 天津市科技兴海项目(KJXH2013-09 KJXH2014-10) 天津市海洋经济创新发展区域示范项目(CXSF2014-3)
关键词 分布式融合 多目标跟踪 自适应分配 权值优化 distributed fusion multi-target tracking adaptive allocation weight optimization
  • 相关文献

参考文献18

  • 1Wu Shun-guang, Das S, Yi Tan, et al. Multiple target tracking by integrating track refinement and data associa- tion [J]. Information Fusion, 2012, 36(2): 1254-1260. 被引量:1
  • 2Balthasar M R, AI-Sayed S, Leier S, et al. Optimal area coverage in autonomous sensor networks[C]// Proceedings of the 2nd International Conference and Exhibition on Underwater Acoustics, 2014, 15(4): 1301-1306. 被引量:1
  • 3Lan Jiang Singh S S, Yildirim S. A new particle filtering algorithm for multiple target tracking with non-linear observations[C]//2014 17th International Conference on Information Fusion, 2014: 7-12. 被引量:1
  • 4Gao X, Chen J, Tao D. Multi-sensor centralized fusion without measurement noise covariance by variational Bayesian approximation[J]. IEEE Trans. on Aerospace and Electronic Systems, 2011, 47 (1): 718-727. 被引量:1
  • 5Melzi M, Ouldali A, Messaoudi Z. Multiple target tracking and classification using the unscented probability hypothesis density filter[J]. Systems, Signal Processing and their Applications, 2011, 38(5): 9-13. 被引量:1
  • 6Parmar P, Zaveri M. Multiple target tracking and data association in wireless sensor network[C]//Computational Intelligence and Communication Networks. 2012:3 -5. 被引量:1
  • 7付莹,孙永健,汤子跃.基于分布式BLUE的多雷达数据融合方法[J].计算机工程,2013,39(4):52-57. 被引量:5
  • 8Yang J, Ge H. An improved multi-target tracking algorithm based on CBMeMBer filter and variational Bayesian approximation[J]. Signal Processing, 2013, 93(9): 2510-2515. 被引量:1
  • 9李翠丽..机动目标跟踪算法研究[D].西安电子科技大学,2013:
  • 10杨小军.基于Unscented信息滤波器的分布式目标融合跟踪[J].吉林大学学报(工学版),2015,45(2):658-662. 被引量:6

二级参考文献58

  • 1丁振,潘泉,张洪才,戴冠中.多目标跟踪系统性能评估及软件包[J].现代雷达,1995,17(5):21-27. 被引量:2
  • 2胡昭华,宋耀良.一种用于运动跟踪的加窗粒子滤波新算法研究[J].南京理工大学学报,2007,31(3):337-341. 被引量:3
  • 3Bar-Shalom Y, Rong L X, Kirubarajan T. Estimation with Application to Tracking and Navigation: Theory Algorithms and Software. New York: Wiley, 2001. 69-83. 被引量:1
  • 4Sorenson H W. Kalman Filtering: Theory and Application. New York: IEEE, 1985. 被引量:1
  • 5Daum F. Nonlinear filters: beyond the Kalman filter. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 57-69. 被引量:1
  • 6Athans M, Wisher R P, Bertolini A. Suboptimal state esti- mation for continuous-time nonlinear systems from discrete noise measurements. IEEE Transactions on Automatic Con- trol, 1968, 13(5): 504-514. 被引量:1
  • 7Julier S J, Uhlmann J K, Durrant-Whyte H F. A new method for nonlinear transformation of means and covariances in fil- ters and estimators. IEEE Transactions on Automatic Con- trol, 2000, 45(3): 477-482. 被引量:1
  • 8Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401-422. 被引量:1
  • 9Saulson B G, Chang K C. Nonlinear estimation compari- son for ballistic missile tracking. Optical Engineering, 2004, 43(6): 1424-1438. 被引量:1
  • 10Xiong K, Chan C, Zhang H S. Detection of satellite atti- tude sensor faults using the UKF. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 480-491. 被引量:1

共引文献143

同被引文献33

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部