期刊文献+

提高GPS定位精度的自适应IMM滤波算法

Adaptive IMM Algorithm for Improving GPS Positioning Accuracy
下载PDF
导出
摘要 为提高GPS动态定位解算精度,将IMM算法引入到GPS定位解算中,利用匀速模型和"当前"统计模型进行交互。利用位置估计值与加速度的函数关系自适应调整加速度方差,同时引入强跟踪滤波器,提高模型对载体突发机动的自适应跟踪能力。利用SpirentGPS模拟器和NovAtel差分系统及NovAtel接收机分别进行了仿真实验和跑车实验。实验结果表明,该算法的定位精度优于标准的"当前"模型滤波算法和No-vAtel接收机。 The interacting multiple model algorithms were introduced into GPS positioning.The constant velocity model and current statistics model were selected.A method using the relation of location estimation and acceleration was presented to adjust the acceleration variance adaptively.The strong tracking filter was utilized to improve the adaptive tracking performance when there was a sudden maneuver.Simulation and run-in test were carried out employing GPS simulator and NovAtel differential position system as well as NovAtel receiver,respectively.The results indicate that this adaptive algorithm has higher accuracy than normal current statistical model as well as NovAtel receiver.
出处 《弹箭与制导学报》 CSCD 北大核心 2010年第6期66-69,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 GPS 定位精度 交互式多模型 “当前”统计模型 GPS positioning accuracy interaction multiple models current statistical model
  • 相关文献

参考文献6

  • 1Blom H A P,Bar-Shalom Y.The interactive multiple model algorithm for system with markov switching coefficients[J].IEEE Trans,on Automatic Control,1988,33(8):780-783. 被引量:1
  • 2韩崇昭..多源信息融合[M].北京:清华大学出版社,2006:488.
  • 3范小军,刘锋.一种新的机动目标跟踪的多模型算法[J].电子与信息学报,2007,29(3):532-535. 被引量:32
  • 4周宏仁等著..机动目标跟踪[M].北京:国防工业出版社,1991:366.
  • 5Zhou D H,Frank P M.Strong tracking filtering of nonlinear time-varying stochastic systems with colored noise:Application to parameter estimation and empirical robustness analysis[J].International Journal of Control,1996,65(2):295-307. 被引量:1
  • 6隋红波,房晓颖,吴瑛.改进的当前统计模型及自适应跟踪算法[J].雷达科学与技术,2008,6(3):202-205. 被引量:13

二级参考文献14

  • 1敬忠良,徐宏,周雪琴,戴冠中.基于神经网络的机动目标信息融合与并行自适应跟踪[J].航空学报,1995,16(6):715-719. 被引量:18
  • 2万莉,刘焰春,皮亦鸣.EKF、UKF、PF目标跟踪性能的比较[J].雷达科学与技术,2007,5(1):13-16. 被引量:40
  • 3Singer R A.Estimating optimal tracking filter performance for manned maneuvering targets[J].IEEE Trans.on Aerospace and Electronic Systems,1970,AES-6(4):473-483. 被引量:1
  • 4Zhou H R and Kumar K S P.A current statistical model and adaptive algorithm for estimating maneuvering targets[J].AIAA Journal of Guidance,1984,7(5):596-602. 被引量:1
  • 5Blom H A P and Bar-Shalom Y.The interactive multiple model algorithm for system with markov switching coefficients[J].IEEE Trans.on Automatic Control,1988,33(8):780-783. 被引量:1
  • 6Li X R and Bar-Shalom Y.Performance prediction of the interacting multiple model algorithm[J].IEEE Trans.on Aerospace and Electronics,1993,29(13):755-771. 被引量:1
  • 7Chen Ling and Li Shaohong.IMM tracking of 3D maneuvering target with passive TDOA system[J].IEEE Int.Conf.Neural Networks & Signal Processing,Nanjing,China,2003:1611-1614. 被引量:1
  • 8Mazor E,et al.Interacting multiple model methods in multiple-multiple tracking:a survey[J].IEEE Trans.on AES,1998,34 (1):103-122. 被引量:1
  • 9Jikov V P,Angelova D S,and Semerdjiev T A.Design and comparison of mode-set adaptive IMM algorithms for maneuvering target tracking.IEEE Trans.on Aerospace and Electronic Systems,1999,35(1):343-350. 被引量:1
  • 10Zhou D H and Frank P M.Strong tracking filtering of nonlinear time-varying stochastic systems with colored noise:application to parameter estimation and empirical robustness analysis[J].IEEE Int.J Control,1996,65(2):295-307. 被引量:1

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部