期刊文献+

对接种条件下时滞双病毒感染模型的稳定性分析 被引量:2

The Stability of a Delayed Two-Strain Model with Single Vaccination
下载PDF
导出
摘要 针对病毒变异而产生的2种不同病毒同时感染人群情形,研究了仅对其中一种病毒有效的接种预防对另一种病毒的传播所产生的影响;建立了一类具有时滞的双病毒感染传染病模型.通过构造合适的Lyapunov泛函,得到了系统的全局动力学性质,即当基本再生数小于1时,两种病毒最终均会消亡,而当基本再生数大于1时,到底是一种还是2种病毒引起地方病依赖于某些参数值.本文结论为双株病毒动力学模型中单一病毒的接种率的影响研究提供了有用的信息. Considering the problems that a virus mutates and two strains appear in population, and supposing that a vaccine is implemented for one strain, the impact on the spread of the other strain was studied by establishing a two-strain model with delay. The global dynamics of the model was completely determined through selecting the suitable Lyapunov functionals. The analysis shows that, if the basic reproduction number is less than one, then both the strains die out; but when the number is larger than one, one or both of the strains become endemic depending on some parameter values. The theoretical results provide some useful information on the impact of the vaccination rate of this single-vaccine for one strain on the dynamics of the two strains.
作者 侯新华 王菲
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2013年第1期5-11,共7页 Journal of Natural Science of Hunan Normal University
基金 湖南省自然科学基金资助项目(09JJ3009)
关键词 传染病 接种 平衡点 基本再生数 全局渐近稳定 LYAPUNOV泛函 epidemics vaccination equilibrium basic reproduction number global asymptotic stability Lyapunov functional
  • 相关文献

参考文献11

二级参考文献87

  • 1Roberts M G, Kao R R. The dynamics of an infectious disease in a population with birth pulse[J]. Mathematical Biosciences, 1998,149 (1) :23-36. 被引量:1
  • 2Stone L, Shulgin B, Agur Z. Theoretical examination of the pulse vaccination policy in the SIR epidemic model [J]. Mathematical Computer Modeling, 2000,31 (4-5) :207-215. 被引量:1
  • 3D'Onofrio Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model[J]. Mathematical Biosciences, 2002,179 (1) : 57-72. 被引量:1
  • 4Vanden Driessche P, Watmough J. A simple SIS epidemic model with a backward hifurcation[J]. Journal of Mathematical Biology, 2000,40(6) : 525-540. 被引量:1
  • 5Vanden Driessche P, Watmough J. Epidemic solutions and endemic catastrophes [J]. Fields Institute Communications, 2003,36 (1) : 247-257. 被引量:1
  • 6Alexander ME, Moghadas SM. Periodicity in an epidemic model with a generalized non-linear incidence[J]. Mathematical Biosciences, 2004,189 (1) : 75-96. 被引量:1
  • 7D'Onofrio Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model. Mathematical Biosciences, 2002, 179(1): 57-72. 被引量:1
  • 8Li Michael Y, Smith Hall, Wang Liancheng. Global dynamics of an SEIR epidemic model with vertical transmission. SIAM Journal on Applied Mathematics, 2001, 62(1): 58-69. 被引量:1
  • 9Meng Xinzhu, Chen Lansun, Cheng Huidong. Two profitless delays for theSEIRS epidemic disease model with nonlinear incidence and pulse vaccination. Applied Mathematics and Computation, 2007, 186(1): 516-529. 被引量:1
  • 10Fine P M. Vectors and vertical transmission: An epidemiologic perspective. Annals of the New York Academy of Sciences, 1975, 266(11): 173-194. 被引量:1

共引文献41

同被引文献24

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部