摘要
针对病毒变异而产生的2种不同病毒同时感染人群情形,研究了仅对其中一种病毒有效的接种预防对另一种病毒的传播所产生的影响;建立了一类具有时滞的双病毒感染传染病模型.通过构造合适的Lyapunov泛函,得到了系统的全局动力学性质,即当基本再生数小于1时,两种病毒最终均会消亡,而当基本再生数大于1时,到底是一种还是2种病毒引起地方病依赖于某些参数值.本文结论为双株病毒动力学模型中单一病毒的接种率的影响研究提供了有用的信息.
Considering the problems that a virus mutates and two strains appear in population, and supposing that a vaccine is implemented for one strain, the impact on the spread of the other strain was studied by establishing a two-strain model with delay. The global dynamics of the model was completely determined through selecting the suitable Lyapunov functionals. The analysis shows that, if the basic reproduction number is less than one, then both the strains die out; but when the number is larger than one, one or both of the strains become endemic depending on some parameter values. The theoretical results provide some useful information on the impact of the vaccination rate of this single-vaccine for one strain on the dynamics of the two strains.
出处
《湖南师范大学自然科学学报》
CAS
北大核心
2013年第1期5-11,共7页
Journal of Natural Science of Hunan Normal University
基金
湖南省自然科学基金资助项目(09JJ3009)
关键词
传染病
接种
平衡点
基本再生数
全局渐近稳定
LYAPUNOV泛函
epidemics
vaccination
equilibrium
basic reproduction number
global asymptotic stability
Lyapunov functional