摘要
对于具有脉冲免疫接种下的双时滞SIRS传染病模型,利用频闪映射及脉冲微分不等式,证明模型的无病周期解的存在性和无病周期解的全局稳定性.运用脉冲微分方程比较原理,证明疾病的持久性.通过对模型数值模拟,分析了接种率对模型的影响.
An SIRS epidemic model with two time delays and impulsive vaccination is researched. The disease- free periodic solution is obtained by using stroboscopic map, and the global stability of disease-free periodic solution is proved by using impulsive differential inequality. The permanence of disease is proved by using the comparison principle of pulse vaccination. The effect of vaccination rates is analyzed by the numerical simulation.
出处
《哈尔滨理工大学学报》
CAS
北大核心
2015年第4期11-15,共5页
Journal of Harbin University of Science and Technology
基金
黑龙江省教育厅科学技术研究项目(12521099)
关键词
双时滞
脉冲
稳定性
持久性
two time delays, vaccination, stability, permanence