期刊文献+

一类具免疫应答和非线性感染函数的时滞HIV-1感染模型的全局稳定性 被引量:4

Global Stability of a Delayed HIV-1 Infection Model with Immune Response and Nonlinear Infection Function
下载PDF
导出
摘要 考虑到HIV-1感染过程中免疫反应和非线性感染函数,建立了一类具有三个分布时滞的HIV-1感染动力学模型.得到了关于病毒感染的基本再生数R0和CTLs免疫反应的基本再生数R1<R0.通过构造Lyapunov泛函证明了系统具有阈值动力学性质,即当R0≤1时,系统存在全局渐近稳定的无感染平衡点;当R1≤1<R0时,系统出现一个全局渐近稳定的无免疫应答感染平衡点;当R1>1时,系统出现一个全局渐近稳定的免疫应答感染平衡点. Based on immune response and nonlinear infection function in HV-1 infection,an HIV-1 infection model with three distributed delays was established. The basic reproduction number R0 for viral infection and R1 〈R0 for CTLs response were obtained. By constructing Lyapunov functions, it is shown that the model exhibits a threshold dynamics., the uninfected equilibrium exists and is globally asymptotically stable if Ro ≤1 ;the infected equilibrium without immune response exists and is globally asymptotically stable if R1 ≤1≤Ro ; the infected equilibrium with immune response is globally asymptotically stable if R1 〉1.
作者 常侠 袁朝晖
出处 《经济数学》 北大核心 2011年第4期1-5,共5页 Journal of Quantitative Economics
基金 广西自然科学基金(2010GXNSFC013012)
关键词 时滞 稳定性 LYAPUNOV泛函 免疫反应 delays stability Lyapunov function immune response
  • 相关文献

参考文献12

  • 1W NELSON, S PERELSON. Mathematical analysis of delay differential equation models of HIV-1 infection [J]. Mathematical Biosciences , 2002, 179(1): 73--94. 被引量:1
  • 2L WANG, M Y LI. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells [J].Mathematical Biosciences, 2006, 200 (1) : 44-- 57. 被引量:1
  • 3R OUIFKI,G WlTTEN Stability analysis of a model for HIV infection with RTI and three intraeellular delays [J]. BioSystems. 2009. 95(1): 1--6. 被引量:1
  • 4Y KANG. Delay differential equations with application in population dynamics [M]. Aca-demie Press San Diego, 1993. 被引量:1
  • 5马知恩等著..传染病动力学的数学建模与研究[M].北京:科学出版社,2004:399.
  • 6R XU. Global dynamics of an HIV-1 infection model with distributed intraeellular delays [J-]. Computers and Mathematics with Applications, 2011, 61(9):2799--2805. 被引量:1
  • 7C LV, Z YUAN. Stability analysis of delay differential equation models of HIV-1 therapy for fighting a virus with another virus [J]. J Math Anal Appl,2009, 352 (2) : 672--683. 被引量:1
  • 8H GOMEZ-ACEVEDO, M Y LI, S JACOBSON. Multistability in a model for CTL response to HTLV-I infection and its implications to HAM/TSP development and prevention [J]. Bull Math Biol, 2010, 72 (3) : 681--696. 被引量:1
  • 9H ZHU,X ZOU. Impact of delays in cell infection and virus production on HIV-1 dynamics [J]. Mathematical Medicine and Biology, 2008, 25(2): 99--112. 被引量:1
  • 10H ZHU,X ZOU. Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay [J].Discrete and continuous dynamical systems series B, 2009, 12 (1) : 511--524. 被引量:1

同被引文献22

  • 1庞国萍,陶凤梅,陈兰荪.具有饱和传染率的脉冲免疫接种SIRS模型分析[J].大连理工大学学报,2007,47(3):460-464. 被引量:10
  • 2CUIFANG L V,LI Honghuang,ZHAO Huiyuan. Global stability for an HIV-1 infection model with Bedding- ton-DeAngelis incidence rate and CTL immune response[J].Commun Nonlinear Sci Numer Simulat2014,19(1 ):121-127. 被引量:1
  • 3HUANG Dongwei,ZHANG Xiao,GUO Yongfeng, et al.Analysis of an HIV infection model with treatments and delayed immune response[J].Applied Mathemati- cal Modelling,2016,40 (4):3081-3089. 被引量:1
  • 4NOWAK M A, BONHOEFFER S, HILL A M, et al. Viral Dynamics in hepatitis B virus infeetion[J].Pro- ceedings of the National academy of Sciences of the United States of America,1996,93 (9):4398-4402. 被引量:1
  • 5ELAIW A M,AZOZ S A.Global properties of a class of HIV infection models with Beddington-DeAngelis functional response [J].Mathematieal Metheods in the Applied Sciences,2013,36 (4):779 -794. 被引量:1
  • 6KOROBEINIKOV A.Global properties of basic virusdynamics models[J].Bulletin of Mathematical Biolo- gy,2014,66(4):879-883. 被引量:1
  • 7WANG Xia,AHMED E,SONG Xinyu.Olobal proper- ties of a delayed H1V infection model with CTL immune response[J].Applied Mathematics and Com- putation,2012 ,218 (18):9405 -9414. 被引量:1
  • 8TIAN Xiaohong, XU Rui.Global stability and Hopf bifurcation of an HIV-1 infection model with satura- tion incidence and delayed CTL immune response [J].Applied Mathematics and Computation,2014,237(15):146-154. 被引量:1
  • 9赵文才,孟新柱,张子叶.一类具有传染率βI(1+vI)S的脉冲免疫接种SIRS模型[J].数学的实践与认识,2009,39(12):80-85. 被引量:7
  • 10刘开源,陈兰荪.一类具有垂直传染与脉冲免疫的SEIR传染病模型的全局分析[J].系统科学与数学,2010,30(3):323-333. 被引量:23

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部