期刊文献+

核矩阵列相关低秩近似分解算法 被引量:2

Low-Rank Approximation and Decomposition for Kernel Matrix Based on Column Correlation
原文传递
导出
摘要 提出一种核矩阵低秩近似分解方法.首先针对传统核矩阵分解列与类别独立的假设,研究列之间的关系,结合类别设计核矩阵的列选取策略.在此基础上,将核矩阵的分解分为两个阶段,与传统分解算法只考虑对角元素占优不同,利用核矩阵列之间以及列与类别之间的关系获取的Cholesky因子进行分解,并将其基向量扩展到整个空间.最后给出近似误差界的期望值.该算法不需要列之间或列与类别独立的假设,将列与类别关联,能提取有判别能力的子矩阵,并避免对核矩阵整体进行特征值分解运算,有效降低计算量.多个数据集的实验和分析验证该算法的合理性和有效性. An effective method of low-rank approximation and decomposition for kernel matrix is proposed . Firstly, aiming at the assumption that column of the kernel matrix is independent from its class label, the correlation of columns is studied and a strategy for column selection is designed. Secondly, the kernel matrix is decomposed into two stages: low-rank matrix decomposition and extension. Then an expectation of low-rank approximation error bound is given. The proposed algorithm extracts discriminative sub-matrix without independent assumption. In this way, it avoids the decomposition of the entire kernel matrix and effectively reduces the computational complexity. Finally, the experimental results show that the proposed method is effective and reasonable.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第6期776-782,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.61070137 60702063 60933009)
关键词 核矩阵 不完全Cholesky分解(ICD) 低秩近似 列选取 Kernel Matrix, Incomplete Cholesky Decomposition(ICD), Low-Rank Approximation, Column Selection
  • 相关文献

参考文献20

  • 1Seholkopf B, Smola A, Muller K R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 1998, 10(5) : 1299 -1319. 被引量:1
  • 2Mika S, Ratsch G, Weston J, et al. Fisher Discriminant Analysis with Kernels// Proc of the IEEE Signal Processing Society Work- shop on Neural Networks for Signal Processing. Madison, USA, 1999, IX: 41 -48. 被引量:1
  • 3Williams C K I, Seeger M. Using the Nystrom Method to Speed up Kernel Machines // Leen T K, Dietterich T G, Tresp V, eds. Advances in Neural Information Processing Systems. Cambridge, USA : MIT Press, 2000, XIII: 682 - 658. 被引量:1
  • 4Teixeira A R, Tome A M, Lang E W. Feature Extraction Using Low-Rank Approximations of the Kernel Matrix // Proc of the 5th International Conference on Image Analysis and Recognition. Povoa de Varzim, Portugal, 2008:404 -412. 被引量:1
  • 5Drineas P, Kannan R, Mahoney M W. Fast Monte Carlo Algorithm for Matrices II: Computing a Low-Rank Approximation to a Matrix. SIAM Journal of Computing, 2006, 36( 1 ) : 158 - 183. 被引量:1
  • 6Drineas P, Mahoney M W. On the NystrSm Method for Approxima- ting a Gram Matrix for Improved Kernel-Based Learning. Journal of Machine Learning Research, 2005, 6 : 2153 - 2175. 被引量:1
  • 7Belabbas M A, Wolfe P J. Spectral Methods in Machine Learning and New Strategies for Very Large Data Sets. Proc of the National Academy of Science, 2009, 106 (2) : 369 - 374. 被引量:1
  • 8Boutsidis C, Mahoney M W, Drineas P. An Improved Approxima-tion Algorithm for the Column Subset Problem// Proc of the 20th Annual ACM-SIAM Symposium on Discrete Algorithm. New York, USA, 2009 : 968 - 977. 被引量:1
  • 9业巧林,业宁,张训华.基于极分解下的混合核函数及改进[J].模式识别与人工智能,2009,22(3):366-373. 被引量:8
  • 10Smola A J, Scholkopf B. Sparse Greedy Matrix Approximation for Machine Learning// Proc of the 17th International Conference on Machine Learning. Stanford, USA, 2000 : 911 - 918. 被引量:1

二级参考文献11

  • 1刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:48
  • 2朱燕飞,伍建平,李琦,毛宗源.MISO系统的混合核函数LS-SVM建模[J].控制与决策,2005,20(4):417-420. 被引量:15
  • 3陆阳,王海燕,田娜.组合核函数支持向量机在水中目标识别中的应用[J].声学技术,2005,24(3):144-147. 被引量:9
  • 4Duda R, Hart P. Pattern Classification and Scene Analysis. New York, USA: Wiley, 1973. 被引量:1
  • 5Amari S, Wu S. Improving Support Vector Machine Classifiers by Modifying Kemel Functions. Neural Networks, 1999, 12 ( 6 ) : 783 - 789. 被引量:1
  • 6Haussler D. Convolution Kernels on Discrete Structures. Technical Report, UCSC-CRL-99-10, Santa Cruz, USA: University of California Santa Cruz, 1999. 被引量:1
  • 7Zhang Sheng, Liu Jian, Tian Jinwen. An SVM-Based Small Target Segmentation and Clustering Approach // Proc of the 3rd International Conference on Machine Learning and Cybernetics. Shanghai, China, 2004 : 3318 - 3323. 被引量:1
  • 8Ye Ning, Sun Ruixiang, Liu Yingan. Support Vector Machine with Orthogonal Chebyshev Kernel//Proc of the 18th International Con- ference on Pattern Recognition. Hongkong, China, 2006, 11: 752 - 755. 被引量:1
  • 9Hong Ziquan, Yang Jingyu. Image Algebraic Feature Extraction for Image Recognition. Pattern Recognition, 1991, 24 ( 3 ) : 211 - 219. 被引量:1
  • 10Kernel-Machines. Org. SVM-QP [ DB/OL ]. [ 2008-01-20 ]. http ://www. kemel-machines. org/sofware. 被引量:1

共引文献7

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部