期刊文献+

矩阵奇异值分解及其在高维数据处理中的应用 被引量:20

Research on the Advances of Singular Value Decomposition and Its Application in the High Dimensional Data Mining
原文传递
导出
摘要 矩阵奇异值分解能够实现对高维数据的局部特征提取及维数约减,在智能信息处理和模式识别研究领域具有十分重要的应用价值.首先分析了高维数据处理所面临的困境,并对常用的降维算法进行简单的归纳总结;然后阐述了矩阵奇异值分解的基本原理及其在维数约减和数据压缩中的物理意义;接着通过分析两种建立在奇异值分解基础上的PCA与LSA降维算法的数学导出过程,进一步给出了两者的等价性证明;最后总结了矩阵奇异值分解的优缺点,并且预测了高维数据处理技术未来的发展趋势. As an important large scale data processing technology, Singular Value Decomposition (SVD) of Matrix can be used to abstract local feature and reduce dimension. In this paper, firstly the dilemma of high dimensional data processing is analyzed and the existing algorithms of dimension reduction is generalized and classified. Secondly, the fundamental principles of SVD and physical significance about dimension reduction and data compression are clarified in detail. Thirdly, by analyzing the mathematical reasoning processes of the PCA and LSA which based on SVD technology, we further prove the equivalence of the two dimension reduction algorithms. Finally, We summarize the strongpoint and shortcoming of SVD and forecast the future development tendency of high dimensional data processing technology.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第15期171-177,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(60703086) 南京邮电大学校科研基金(NY210043 NY210044) 江苏省普通高校研究生科研创新计划(CX10B_195Z)
关键词 奇异值分解 维数约减 主分量分析 隐含语义分析 singular value decomposition dimension reduction principal component analy- sis latent semantic analysis
  • 相关文献

参考文献16

  • 1Jain A, Chandrasekaran B. Dimensionality and sample size considerations in pattern recognition practice[J]. Handbook of statistics. Amsterdam, Netherlands, 1982 (2): 835-855. 被引量:1
  • 2Scott D, Thompson J. Probability density estimation in higher dimensions, computer science and statistics[C]//Proceedings of The 15Th Symposium on the Interface, Amsterdam: North Holland- Elsevier Science Publishers, 1983: 173-179. 被引量:1
  • 3毕华,梁洪力,王珏.重采样方法与机器学习[J].计算机学报,2009,32(5):862-877. 被引量:36
  • 4张道强 陈松灿.高维数据降维方法.中国计算机学会通讯,2009,5(8):15-22. 被引量:6
  • 5Wright J, Yang A, Ganesh A, Sastry S, Ma Y. Robust face recognition via sparse representation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2009,31(2): 210-227. 被引量:1
  • 6Bingham E, Mannila H. Random projection in dimensionality reduction: applications to image and text data[C]//Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. 2001: 128-139. 被引量:1
  • 7Jolliffe I. Principal Component Analysis[M]. Springer series in statistics. New York, USA, 2002. 被引量:1
  • 8刘维湘,郑南宁,游屈波.非负矩阵分解及其在模式识别中的应用[J].科学通报,2006,51(3):241-250. 被引量:38
  • 9James V. Independent Component Analysis: A Tutorial Introduction[M]. Cambridge, MA: MIT Press, 2004. 被引量:1
  • 10Dumais S, Fhmas G, Landauer T, et al.. Using latent semantic analysis to improve information retrieval. Conference on human factors in computing, New York, ACM, 1988: 281-285. 被引量:1

二级参考文献104

  • 1汪鹏.非负矩阵分解:数学的奇妙力量[J].计算机教育,2004(10):38-40. 被引量:10
  • 2陈松灿 张道强.输入空间中的核聚类算法[R].南京:南京航空航天大学四院,2002.. 被引量:1
  • 3Valiant L G. A theory of learnable. Communications of the ACM, 1984, 27(11): 1134-1142 被引量:1
  • 4Kearns M, Valiant L G. Learning Boolean formulae or finite automata is as hard as factoring. Cambridge, MA: Harvard University Aiken Computation Laboratory. Technical Report TR-14-88, 1988 被引量:1
  • 5Kearns M, Valiant L G. Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the ACM, 1994, 41(1): 67-95 被引量:1
  • 6Schapire R E. The strength of weak learnability. Machine Learning, 1990, 5(2): 197-227 被引量:1
  • 7Dietterich T G. Ensemble methods in machine learning// Proceedings of the Multiple Classifier Systems. Cagliari, Italy, 2000:1-5 被引量:1
  • 8Freund Y, Schapire R E. Experiments with a new Boosting algorithm//Proceedings of the Thirteenth International Conference on Machine Learning (ICML). Bari, Italy, 1996: 148-156 被引量:1
  • 9Breiman L. Prediction games and arcing classifiers. Neural Computation, 1999, 11(7): 1493-1517 被引量:1
  • 10Breiman L. Bagging predictors. Machine Learning, 1996, 24 (2) : 123-140 被引量:1

共引文献117

同被引文献196

引证文献20

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部