期刊文献+

一种基于矩阵低秩近似的聚类集成算法 被引量:6

Matrix Low Rank Approximation-Based Cluster Ensemble Algorithm
下载PDF
导出
摘要 首先将聚类集成问题归结为直观的最佳子空问的求解问题;随后根据线性代数理论将该问题描述为带约束条件的优化问题,通过放松离散约束条件进一步约简为矩阵低秩近似问题;最后通过求解超图的加权邻接矩阵的奇异值分解问题获得最佳子空间的一组标准正交基.据此,设计了一个基于矩阵低秩近似的算法,该算法根据每个对象在低维空间下的坐标使用K均值算法进行聚类,从而得到最终的结果.在多组基准数据集上的实验结果表明:较之于传统的聚类集成算法,本文的算法获得了更好的聚类结果,且效率较高. As an important extension to conventional clustering algorithms,cluster ensemble techniques became a hotspot in machine learning area.In this paper,cluster ensemble problem was first viewed as a direct problem of seeking the best subspace. And then,we formally described the problem as an optimization problem with constraint according to linear algebra,and further transformed into a matrix low rank approximation problem by relaxing the discrete constraint.Lastly,a set of orthonormal basis of the best subspace was attained by solving the singular value decomposition problem of the hypergraph's weighted adjacent matrix. Hereby,a matrix low rank approximation-based algorithm was proposed,which called K-means algorithm to cluster objects according to their coordinates in the low dimensional space and obtained the final clustering result.Experiments on baseline datasets demonstrate the effectiveness of the proposed algorithm,and it outperforms other baseline algorithms.
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第6期1219-1224,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60970542 No.41006057 No.6110507) 国家863重点项目(No.2008A09701) 国际科技合作聘专重点项目 江苏省高校"青蓝工程"资助项目 盐城工学院人才引进专项基金(No.XKR2011019)
关键词 无监督学习 聚类分析 聚类集成 矩阵低秩近似 unsupervised learning clustering analysis cluster ensemble matrix low rank approximation
  • 相关文献

参考文献17

  • 1STREHL A, GHOSH J. Cluster ensembles-a knowledgereuse framework for combining partitionings [j]. The Journalof Machine Learning Research,2002,3(12) :583 - 617. 被引量:1
  • 2TOPCHY A, JAIN A K, PUNCH W. A mixture model for clus-tering ensembles[ A]. Michael W B, et al. Proceedings of the4th SIAM International Conference on Data Mining [ C]. Flori-da: Society for Industrial and Applied Mathematics, 2004. 379-390. 被引量:1
  • 3徐森,卢志茂,顾国昌.解决文本聚类集成问题的两个谱算法[J].自动化学报,2009,35(7):997-1002. 被引量:20
  • 4FRED A, LOURENGO A. Supervised and Unsupervised En-semble Methods and Their Applications[M] . Berlin: Springer,2008.3-30. 被引量:1
  • 5FERN X Z, BRODLEY C E. Solving cluster ensemble prob-lems by bipartite graph partitioning[A]. Russ G,Dale S. Pro-ceedings of 21st International Conference on Machine Learning[C].New York: ACM,2004.36 - 43. 被引量:1
  • 6LI T’DING C, JORDAN M I. Solving consensus and semi-su-pervised clustering problems using nonnegative matrix factoriza-tion[A] . Naren R, Osmar Z. Proceedings of the 7th IEEE Inter-national Conference on Data Mining [ C]. Washington: THRRComputer Society,2007.577 - 582. 被引量:1
  • 7IAM On N,BOONGEON T, GARRETT S,PRICE C. A link-based cluster ensemble approach for categorical data clustering[J] . TEEE Transactions on Knowledge and Data Engineering,2012,24(3):413 - 425. 被引量:1
  • 8唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 9SEVILLANO X,ALIAS F, SOCORO J C. BordaConsensus: anew consensus function for soft cluster ensembles [A]. WesselK,et al. Proceedings of the 30th Annual International ACM SI-GIR[C] .New York: ACM,2007.743 - 744. 被引量:1
  • 10CARPINETO C,ROMANO G. Consensus clustering based ona new probabilistic rand index with application to subtopic re-trieval[ J ]. TEEE Transactions on Pattern Analysis and Ma-chine Int^nigence,2012,34(12) :2315 - 2326. 被引量:1

二级参考文献36

  • 1唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 2TIAN Zheng,LI XiaoBin,JU YanWei.Spectral clustering based on matrix perturbation theory[J].Science in China(Series F),2007,50(1):63-81. 被引量:19
  • 3罗会兰,孔繁胜,李一啸.聚类集成中的差异性度量研究[J].计算机学报,2007,30(8):1315-1324. 被引量:36
  • 4Estivill-Castro V. Why so many clustering algorithms-A position paper. SIGKDD Explorations, 2002,4(1):65-75. 被引量:1
  • 5Dietterich TG. Machine learning research: Four current directions. AI Magazine, 1997,18(4):97-136. 被引量:1
  • 6Breiman L. Bagging predicators. Machine Learning, 1996,24(2):123-140. 被引量:1
  • 7Zhou ZH, Wu J, Tang W. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 2002,137(1-2):239-263. 被引量:1
  • 8Strehl A, Ghosh J. Cluster ensembles-A knowledge reuse framework for combining partitionings. In: Dechter R, Kearns M,Sutton R, eds. Proc. of the 18th National Conf. on Artificial Intelligence. Menlo Park: AAAI Press, 2002. 93-98. 被引量:1
  • 9MacQueen JB. Some methods for classification and analysis of multivariate observations. In: LeCam LM, Neyman J, eds. Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967,1:281-297. 被引量:1
  • 10Blake C, Keogh E, Merz CJ. UCI Repository of machine learning databases. Irvine: Department of Information and Computer Science, University of California, 1998. http://www.ics.uci.edu/~mlearn/MLRepository.html 被引量:1

共引文献136

同被引文献94

  • 1刘云峰 ,齐欢 ,HU Xiang'en ,CAI Zhiqiang ,代建民 .基于潜在语义空间维度特性的多层文档聚类[J].清华大学学报(自然科学版),2005(S1):1783-1786. 被引量:11
  • 2张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 3贾正华.广义逆矩阵及其性质[J].巢湖学院学报,2005,7(3):38-39. 被引量:4
  • 4CONG Ling-bo, RUAN Wan-qing. K-Mean clustering analysis and its applications to classification of tumor gene [ M ]//Informatics and Management Science llI. London:Springer, 2013: 699-706. 被引量:1
  • 5XIONG Z, CHEN R, ZHANG Y, et al. Multi-density DBSCAN algo- rithm based on density levels partitioning[ J]. Journal of Informa- tion and Computational Science, 2012, 9(10): 2739-2749. 被引量:1
  • 6MAHESHWARY P, SRIVASTAVA N. Wave cluster for remote sen- sing image retrieval [ J ]. International Journal on Computer Science and Engineering, 2011, 3(2) : 976-979. 被引量:1
  • 7FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976. 被引量:1
  • 8CHEN Jin-hua, CHEN Xiao-yun. Relative density weights based fuzzy C-means clustering algorithms [ J ]. Quantitative Logic and Soft Computeing, 2010, 82(2) :459-466. 被引量:1
  • 9SHANG Fan-hua, JIAO L C, SHI Jia-rong, et al. Fast affinity propa- gation clustering: a multilevel approach [ J ]. Pattern Recognition, 2012, 45(1 ): 474-486. 被引量:1
  • 10HASSANABADI B, SHEA C, ZHANG L, et al, Clustering in vehi- cular Ad hoe networks using affinity propagation [ J ]. Ad hoc Net- works, 2014, 13: 535-548. 被引量:1

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部