期刊文献+

基于SURF特征点的图像配准系统 被引量:11

Image registration system based on SURF feature points
下载PDF
导出
摘要 提出一种基于SURF特征点的图像自动配准方法。首先在图像的尺度空间中提取特征点,然后对特征点进行亚像素定位,并赋予主方向。根据特征点邻域信息分布计算得到特征向量后,利用最近邻特征点距离与次近邻特征点距离之比得到初始匹配点对。然后使用RANSAC算法剔除错误匹配特征点对,同时计算得到图像之间的变换参数。实验结果表明该方法能够实现不同分辨率图像的自动配准。 An automatic image registration method based on SURF feature points was proposed.First,extracts the feature points from the scale space of the image,then locates feature points on the sub-pixel coordinates,and gives the main orientation.Initial feature points matching can be calculated by using the distance ratio of the nearest neighbor feature point and the next nearest neighbor feature point.Then RANSAC(Random Sample Consensus) algorithm was used to match the initial feature points set,while calculating transformation parameters between the two images.The results show that the method can achieve robust automatic image registration between different resolution images.
出处 《计算机应用》 CSCD 北大核心 2011年第A01期73-75,共3页 journal of Computer Applications
基金 云南省自然科学基金资助项目(2000YP20) 西南林业大学面上基金资助项目(200616M)
关键词 图像配准 特征匹配 鲁棒估计 image registration feature matching robust estimation
  • 相关文献

参考文献8

  • 1张振,徐守时,胡俊华,张开华.基于局部特征的遥感图像快速自动配准[J].计算机工程与应用,2010,46(13):161-163. 被引量:6
  • 2沈小卫,何明一.一种基于混合优化算法的医学图像配准方法[J].计算机应用研究,2010,27(8):3159-3161. 被引量:8
  • 3邹北骥,阮鹏,向遥,贺加贝.一种精确匹配的全景图自动拼接算法[J].计算机工程与科学,2010,32(8):60-63. 被引量:23
  • 4HARRIS C, STEPHENS M. A combined comer and edge detector [ C] // Proceedings of the 4th Alvey Vision Conference, Manchester:. [S. n. ], 1988, 15:147 - 151. 被引量:1
  • 5LOWE D G. Distinctive image features from scale-invarlant key- points[ J]. International Journal of Computer Vision, 2004, 60(2) : 91 -110. 被引量:1
  • 6HERBERT B, ANDREAS E, TNNE T, et al. SURF: Speeded Up RoLust Features[J]. Computer Vision and Image Understanding, 2008, 110(3) : 346 -359. 被引量:1
  • 7VIOLA P A, JONES M J. Rapid object detection using a boosted cascade of simple features[ C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2001, 1 : 511 - 518. 被引量:1
  • 8FISCHLER M A, BOLLES R C. Random sample consensus: A par- adigm for model fitting with applications to image analysis and attto- mated cartography [J]. Communication of the ACM, 1981, 24(6) : 381 -395. 被引量:1

二级参考文献32

  • 1高鹰,谢胜利.混沌粒子群优化算法[J].计算机科学,2004,31(8):13-15. 被引量:104
  • 2何红太,王秀美,全茜.刑事犯罪现场的图像拼接设计与实现[J].计算机工程与科学,2004,26(12):46-48. 被引量:2
  • 3方贤勇,张明敏,潘志庚,王鹏.A New Method of Manifold Mosaic for Large Displacement Images[J].Journal of Computer Science & Technology,2006,21(2):218-223. 被引量:6
  • 4Flusser J.Suk a moment-based approach to registration of images with affine geometric distortion[J].IEEE Transactions on Geoscience and Remote Sensing,1994,32(2):382-387. 被引量:1
  • 5Mikolajczy K,Schmid C.A performance evaluation of local descriptors[J].IEEE Trons on Pattern Analysis and Machine Intelligence,2005,27(10):1615-1630. 被引量:1
  • 6Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 7Brown L G.A survey of image registration techniques[J].ACM Computing Surveys,1992,24(4):325-376. 被引量:1
  • 8Linderberg T.Scale-space theory:A basic tool for analyzing structures at different scales[J].Jonrnal of Applied Statistics,1994,21(2):224-270. 被引量:1
  • 9Beis,Lowe D G.Shape indexing using approximate nearest-neighbour search in high-dimensional spaces[C]//IEEE Conference on Computer Vision and Pattern Recngnition(CVPR),Puerto Rico,1997:1000-1006. 被引量:1
  • 10Fischler M A,Bolles R C.Random sample consensus:A paradigm for model fitting with applications to image analysis and automated eartography[J].Comm of the ACM,1981,24:381-395. 被引量:1

共引文献32

同被引文献87

引证文献11

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部