期刊文献+

改进SIFT特征粒子群优化的机器人视觉图像配准模型研究 被引量:1

Optimization of robot visual images registration model based on SIFT particle swarm improvement
下载PDF
导出
摘要 针对机器人视觉图像尺度小、重复率低、数据量大和实时性差等特点,以提高图像配准效率、减少配准时间为目的,提出了改进SIFT特征粒子群优化的机器人视觉图像配准CSIFT-QPSO算法。CSIFT-QPSO算法通过建立S金字塔对SIFT算法进行改进,达到降低空间复杂度和减少极值点数量的目的,并将改进后的SIFT算法与QPSO算法中适应值函数相融合,将当前检测到的极值点与最近更新的目标模块相配准,从而更具鲁棒性地应对机器人视觉图像的配准问题。通过Matlab软件进行仿真,仿真结果表明:CSIFT-QPSO算法具有较高的配准精度和较少的配准时间,适用于对实时性要求较高的机器人视觉图像配准系统。 Against the characteristics of robot visual images small-scale, low overlap rate and large amount of data, in order to im- prove the efficiency of image registration, reducing the time for the purpose of registration, proposes the improved SIFT feature particle swarm optimization robot image registration CSIFT-QPSO algorithm. To reduce the muhi-scale spatial and the number of feature points, the algorithm through the establishment of the S-layer pyramid, integrate the fitness function of the improved algo- rithm SIFT and QPSO,to match the currently detected feature points and the target module updated recently, thus more robust to deal with the registration problem of robot visual images. Finally, Matlab simulation results show that the improved algorithm has higher matching accuracy and less matching time,which is suitable for real-time robot visual images registration system.
出处 《现代制造工程》 CSCD 北大核心 2015年第9期34-37,共4页 Modern Manufacturing Engineering
关键词 视觉图像 CSIFT-QPSO算法 尺度空间 适应值 visual images CSIFT-QPSO algorithm scale space fitness
  • 相关文献

参考文献12

  • 1Daniel 1 Barnea, Harvey F Silverman. A class of algorithms for fast digital image registration [ J ]. IEEE Transactions on Computers, 2002,2 ( 2 ) : 179 - 186. 被引量:1
  • 2David G Lowe. Distinctive image features from scale-invari- ant keypoints [ J ]. IEEE International Journal of Computer,2004,60(2) :91 - 110. 被引量:1
  • 3Zhang Yu, Zhu Dan, Wang Yuliang. hnproved fast feature matching method of SIFT[ J]. Control and Automation Publi- cation Group ,2008,24(l1) :220 - 222. 被引量:1
  • 4Cordelia Schmid, Roger Mohr. Loeal gray value invariants for image retrieval[ J ]. IEEE Pattern Analysis and Machine In- telligence, 1997,25 ( 8 ) : 15 - 19. 被引量:1
  • 5肖健..SIFT特征匹配算法研究与改进[D].重庆大学,2012:
  • 6刘宏娟..基于DSP的航拍图像配准系统的研究与实现[D].西安电子科技大学,2012:
  • 7David G Lowe. Local feature view clustering for 3D object recognition. Proc. of the IEEE Conference on Computer Vi- sion and Pattern Recognition [ C ]. Kauai, Hawaii: [ s. n. ] ,2001. 被引量:1
  • 8Zhang Xiaoping, Hu Weiming, Qu Wei, et al. Muhi-object tracking via species based particle swarm optimization [ J ]. IEEE Trans on CSVT,2010,20( 11 ) : 1590 - 1602. 被引量:1
  • 9程德志,李言俊,余瑞星.基于改进SIFT算法的图像配准方法[D].西安:西北工业大学,2011. 被引量:1
  • 10姚文伟,张智斌,李国,姜波.图像匹配算法SIFT的改进[J].郑州轻工业学院学报(自然科学版),2011,26(6):67-70. 被引量:7

二级参考文献8

共引文献6

同被引文献2

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部