期刊文献+

基于改进SIFT的图像拼接算法 被引量:3

An image mosaic algorithm based on improved SIFT
下载PDF
导出
摘要 针对目前基于SIFT的图像拼接算法复杂度较高和特征点匹配不准等问题,提出了一种基于改进SIFT的图像拼接算法。算法利用改进的SIFT进行特征提取,降低了算法的复杂度,同时采用模拟退火算法进行特征点匹配,从而估计出几何变换的参数。实验结果表明,该方法对图像间存在的平移、旋转、明暗强度和噪声干扰都具有良好的鲁棒性,可实现高质量的图像拼接。 In order to solve the problems of heavy computing load and the inaccurate matching of feature points compared with the traditional image mosaic algorithm based on SIFT, an novel image mosaic algorithm based on improved SIlT is proposed in this paper. The feature points are extracted by improved SIFT, so it can reduce the computing load. Meanwhile, the feature points matching are realized by simulated annealing algorithm, and the geometric parameter is computed. Experimental results demonstrate that the proposed method is robust to translation, rotate, intensity and noise, and can produce high quality image mosaic.
出处 《电子设计工程》 2013年第2期34-37,共4页 Electronic Design Engineering
关键词 图像拼接 尺度不变特征变换 模拟退火算法 灰度校正 image mosaic SIFT simulated annealing algorithm gray calibration
  • 相关文献

参考文献6

二级参考文献45

共引文献159

同被引文献33

  • 1杨福刚,孙同景,庞清乐,孙波.基于SVM和小波的木材纹理分类算法[J].仪器仪表学报,2006,27(z3):2250-2252. 被引量:6
  • 2David G.Lowe. Distinctive Image Features from Scale- Invariant Keypoints. International Journal of Computer Vision, 2004, 60(2):91-110. 被引量:1
  • 3钟健.基于对极几何的图像匹配研究.中南大学.2010. 被引量:1
  • 4CS Chen, YP Hung, JB Cheng. RANSAC-based DARCES: a new approach to fast automatic registration of partially overlapping range images. Pattern Analysis and Machine Intelligence. 1999, 21 (11): 1229-1234. 被引量:1
  • 5LOWED G. Object Recognition From Local Scalein Variant Fea-tures [ C ]//Proceesings of the 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999 : 1150 - 1157. 被引量:1
  • 6YU GANG JIANG, JUN YANG,CHONG-WAH NGO. Represen- tation of Key-point-based Semantic Concept Detection Comprehen- sive Study[J]. IEEE transactions on multimedia,2010,12( 1 ) :42 -53. 被引量:1
  • 7LOWED G. Distinctive Image Features From Scaleinvariant Key- points[ J ]. International Journal of Computer Vision 2004,60 (2) : 90 - 110,. 被引量:1
  • 8YAN KE, RAHUL SUKTHANKAR. PCA-SIFT:A More Distinctive Representation for I.oeal Image Descriptors [ C ]//In : Proceedings of the conference on Computer Vision and Pattern Recognition, Washinaton. USA .2004:511 - 517. 被引量:1
  • 9HUANG G B, WANG D. Advances in Extreme Learning Machines ( ELM2010 ) [ J ]. Neuroeomputng,2011,74 ( 16 ) :2411 - 2412. 被引量:1
  • 10高健,黄心汉,彭刚,王敏,吴祖玉.一种简化的SIFT图像特征点提取算法[J].计算机应用研究,2008,25(7):2213-2215. 被引量:31

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部