期刊文献+

SURF与灰度差分在小模数塑料齿轮缺陷检测中的研究与应用 被引量:7

Research and Application of SURF and Gray Difference in Detection of Small Modulus Plastic Gear Defect
下载PDF
导出
摘要 利用FLANN算法对已检测的SURF描述子进行特征匹配,对获得的关键点进行迭代排序,用RANSAC算法进行匹配点优化提纯。通过灰度差分算法对经过矩阵变换配准后的图像进行缺陷区域提取,采用Otsu阈值法进行图像分割,并对缺陷连通域面积特征进行分析。试验结果表明,该方法在检测速度与范围方面优于传统的检测算法,在小模数塑料齿轮工业在线检测方面有着积极的研究意义与价值。 The FLANN( Fast library for approximate nearest neighbors) algorithm is used to match the detected SURF( Speeded up robust features) descriptors. The obtained key points are iteratively sorted,and the RANSAC( Random sample consensus) algorithm is used to extract the matching points for two times. The gray difference algorithm is used to extract the defective region after the matrix transformation registration,using the Otsu threshold method to segment the image and the characteristics of defect area domain are analyzed,which uses the Otsu threshold method to segment the image. The results show that the method is superior to the traditional detection algorithm in detecting speed and range. So it has positive research significance and value in on-line inspection of small module plastic gear industry.
作者 杨亚 陶红艳 余成波 Yang Ya1,Tao Hongyan1 ,Yu Chengbo2(1 College of Mechanical Engineering,Chongqing University of Technology, Chongqing 400054, China;2 Remote Testing and Control Technology Research Institute, Chongqing University of Technology, Chongqing 400054, Chin)
出处 《机械传动》 CSCD 北大核心 2018年第5期156-160,共5页 Journal of Mechanical Transmission
基金 国家自然科学基金(61402063) 重庆市科技人才培养计划(新产品研发团队)(CSJ2013KJRC-TDJS40012)
关键词 小模数塑料齿轮 特征匹配 灰度差分 缺陷检测 连通域分析 Small modulus plastic gear Feature matching Gray difference Detection of defects Connected domain analysis
  • 相关文献

参考文献13

二级参考文献87

  • 1雷振山,刘兆妮.应用IMAQ Vision的齿轮测量技术[J].制造技术与机床,2005(2):53-56. 被引量:5
  • 2尹衍升,赵秀阳,田晓峰,李嘉.基于特征点提取的复合材料显微图像自动拼接[J].科学通报,2006,51(22):2695-2698. 被引量:2
  • 3HARRIS C, STEPHENS M. A combined comer and edge detector [ C] // Proceedings of the 4th Alvey Vision Conference, Manchester:. [S. n. ], 1988, 15:147 - 151. 被引量:1
  • 4LOWE D G. Distinctive image features from scale-invarlant key- points[ J]. International Journal of Computer Vision, 2004, 60(2) : 91 -110. 被引量:1
  • 5HERBERT B, ANDREAS E, TNNE T, et al. SURF: Speeded Up RoLust Features[J]. Computer Vision and Image Understanding, 2008, 110(3) : 346 -359. 被引量:1
  • 6VIOLA P A, JONES M J. Rapid object detection using a boosted cascade of simple features[ C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2001, 1 : 511 - 518. 被引量:1
  • 7FISCHLER M A, BOLLES R C. Random sample consensus: A par- adigm for model fitting with applications to image analysis and attto- mated cartography [J]. Communication of the ACM, 1981, 24(6) : 381 -395. 被引量:1
  • 8Zhao F W,de Silva C J S.Use of the Laplacian of Gaussian operator in prostate ultrasound image processing[C]// Proceedings of the 20th Annual International Conference of the IEEE.Hong Kong,1998,2:812-815. 被引量:1
  • 9Sahyun Hong,Moon W M,Hong-Yul Paik.Data fusion of multiple polarimetric SAR images using discrete wavelet transform (DWT)[C]//Geoscience and Remote Sensing Symposium.Toronto,Ont,Csmsfs,2002,6:3323-3325. 被引量:1
  • 10Charoentam O,Patanavijit V,Jitapunkul S.A stable region-based multiscale image fusion scheme with thermal and visible image application for mis-registration problem[ C ]// IEEE North-East Workshop on Circuits and Systems.Gatineau,Que,2006:113-116. 被引量:1

共引文献119

同被引文献63

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部