期刊文献+

修正表面张力算法的SPH方法及其实现 被引量:14

Smoothed Particle Hydrodynamics Method with Modified Surface Tension and Its Implementation
下载PDF
导出
摘要 在Morris提出的表面张力SPH方法基础上,通过引入CSPM方法对边界法向的计算和曲率的计算进行修正,得到表面张力修正方程组;通过半圆形算例测试方法和Morris方法在边界定位、法向计算和曲率计算等影响表面张力关键因素的求解精度,研究曲率计算中应采用的光滑长度值.模拟初始方形液滴在表面张力作用下的自然变化过程,并与Morris方法及VOF有限体积法进行对比,表明方法精度较高,稳定性较好.最后,模拟水溶液中两个油滴的互溶过程. Modified equations for surface tension are derived by modifying normal and curvature with corrected smoothed particle method(CSPM).It is based on smoothed particle hydrodynamics(SPH) method with surface tension proposed by Morris.Both Morris and our method are tested via a semicircular problem.Factors that affect accuracy are investigated including surface definition,normal and curvature calculation.Smoothed length in curvature calculation is also confirmed reasonable.Furthermore,formation of a liquid drop with initial square shape under surface tension is simulated.Compared with Morris method and grid-based volume of fluid method,it is proved that the accuracy of our method is higher and particle distribution is more homogeneous.Finally,coalescence process of two oil drops in water under surface tension is simulated.
出处 《计算物理》 EI CSCD 北大核心 2011年第3期375-384,共10页 Chinese Journal of Computational Physics
基金 国家教育部NCET 国家973(973-61310) 第二炮兵工程学院创新性探索研究(EPXY0806)资助项目
关键词 光滑粒子流体动力学 表面张力算法 CSPM方法 CSF方法 曲率 smoothed particle hydrodynamics surface tension method CSPM CSF curvature
  • 相关文献

参考文献3

二级参考文献22

  • 1Perrone N, Kao R. A general finite difference method for arbitrary meshes[J]. Computational Structure, 1975, 5:45 -47. 被引量:1
  • 2Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. The Astron J, 1977, 82(12): 1013- 1024. 被引量:1
  • 3Monaghan J J. An introduction to SPH[J]. Computation Physics and Communication, 1988, 48(1) : 89 -96. 被引量:1
  • 4Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods[J]. Int J Numer Methods Engng, 1995, 20:1081 - 1106. 被引量:1
  • 5Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods[J]. Math Comput, 1981, 37:141 - 158. 被引量:1
  • 6Lisake T, Orkisz J. The finite difference method at arbitrary irregular grids and its application in applied mechanics[J]. Computer and Structures, 1980, 11: 83- 95. 被引量:1
  • 7Belytchko T, Lu Y Y, Gu L. Element free Galerkin methods[J]. Int J Numer Methods Engng, 1994, 37:229 - 256. 被引量:1
  • 8Dilts Gray A. Moving-least-squares-particle hydrodynamics Ⅰ consistency and stability[J]. Int J Numer Meth Engrg, 1999, 44:1115 - 1155. 被引量:1
  • 9Yao Jin, et al. Simulation of shaped-charge with SPH rezone method[ C]// 12th APS SCCM Topical Conference. Atlanta: American Institute of Physics, 2001 : 435 - 438. 被引量:1
  • 10Yao Jin, et al. Simulatlon of detonation problems with MLS grid-free methodology [ C]// 12th International Detonation Symposium. San Diego, 2002. 被引量:1

共引文献18

同被引文献104

引证文献14

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部