期刊文献+

积分节点迎风偏移的节点积分无单元Galerkin方法 被引量:1

Nodal Integration Element-free Galerkin Method with Upwind Shifted Integration Nodes
下载PDF
导出
摘要 建立求解稳态对流-扩散方程的一种稳定、高效的无单元Galerkin方法.该方法计算积分时采用基于局部Taylor展开的节点积分,并根据对流占优的程度对积分节点进行自适应迎风偏移.与传统的使用稳定化的无单元Galerkin方法相比,该方法是一种不依赖于背景网格积分的纯无网格方法,具有更好的稳定性和较高的计算效率,其程序实施更为简便. A stable and efficient element-free Galerkin method is proposed for steady convection-diffusion problems.In the method integrations are computed with a local Taylor expansion nodal integral technique.According to convection-dominated degree,integration nodes are adaptively shifted opposite to the streamline direction.Compared with conventional element-free Galerkin method with stabilization,the method exhibits better stability and higher efficiency in solving convection-dominated convection-diffusion problems.It is a pure meshfree method,which is independent of background integral.Moreover,the method is easy to be implemented.
出处 《计算物理》 EI CSCD 北大核心 2012年第2期183-190,共8页 Chinese Journal of Computational Physics
基金 国家自然科学基金(10871159) 教育部博士研究生学术新人奖 西北工业大学博士论文创新基金(cx201019)资助项目
关键词 无单元Galerkin方法 无网格方法 节点积分 对流-扩散 迎风偏移 element-free Galerkin meshfree nodal integration convection-diffusion upwind shifting
  • 相关文献

参考文献6

二级参考文献85

  • 1Xiong Yuanbo,Long Shuyao,Hu De'an,Li Guangyao.A MESHLESS LOCAL PETROV-GALERKIN METHOD FOR GEOMETRICALLY NONLINEAR PROBLEMS[J].Acta Mechanica Solida Sinica,2005,18(4):348-356. 被引量:9
  • 2张小华,欧阳洁.线性定常对流占优对流扩散问题的无网格解法[J].力学季刊,2006,27(2):220-226. 被引量:9
  • 3LYSHEVSKI S E.MEMS and MEMS Systems,Devices and Strutures[M].CRC Press,Boca,Florida,2002. 被引量:1
  • 4HUNG E S,SENTURIA S D.Generating efficient dynamical models for microelectromechanical systems From a few finite-element simulation runs[J].IEEE Journal of Micro-mechanical Systems,1999,8(3):280-289. 被引量:1
  • 5SHI F,RAMESH P,MUKHERJEE S.Simulation methods for micro-electromechanical structures (MEMS) with application to a microtweezer[J].Computers and Structures,1995,56(5):769-783. 被引量:1
  • 6BATHE K L,RAMM E,WILSON E L.Finite element formulation for large deformation dynamic analysis[J].International Journal for Numerical Methods in Engineering,1975,9(3):353-386. 被引量:1
  • 7LIU G R.Mesh free Methods:Moving Beyond the Finite Element Method[M].CRC Press,Boca Raton,Florida,2002. 被引量:1
  • 8ATLURI S N,ZHU T.A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics[J].Comput Mech,1998,22:117-127. 被引量:1
  • 9LIU G R,GU Y T.A local radial point interpolation method (LR-PIM) for free vibration analyses of 2-D solids[J].Journal of Sound and Vibration,2001,246(1):29-46. 被引量:1
  • 10LIU G R,YAN L,WANG J G,et al.Point interpolation method based on local residual formulation using radial basis functions[J].Struct Engrg Mech,2002,14(6):713-732. 被引量:1

共引文献32

同被引文献18

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部