期刊文献+

一种光滑粒子流体动力学-有限元法转换算法及其在冲击动力学中的应用 被引量:11

Conversion of 3D Distorted Finite Elements into SPH Particles During Impact Dynamic Deformation
下载PDF
导出
摘要 为了解决冲击动力学中的大变形问题,提出了一种光滑粒子流体动力学-有限元法(SPH-FEM)转换算法,以等效Mises应力作为转换判据,将冲击过程中局部大变形区域的有限元网格转换为SPH粒子.该算法在大变形区域使用具有优势的SPH,在小变形区域使用精度和效率更高的FEM,为冲击动力学问题的数值计算提供了一条有效途径.使用SPH-FEM转换算法对圆柱形钢弹正冲击钢板发生冲塞破坏的过程进行了三维数值计算,计算结果与实验吻合较好,显示了该算法在计算精度方面的优势.在实际工程中,需要根据具体材料的失效模式,选择更加合适的转换判据. An algorithm to automatically convert 3D distorted finite elements into SPH (smoothed particle hydrodynamics) particles is proposed, which handles the problems with extreme distortions in impact dynamics. Mises stress criterion is taken, and the SPH-FEM(finite element method) conversion algorithm allows to use accurate and efficient FEM in the lower distortion regions, and SPH in the higher distortion regions. The perforation of a cylindrical steel projectile impacting a plate target is simulated in 3D using the SPH-FEM conversion algorithm. The good agree- ment between the computed result and the experimental observation shows the accuracy superiority of this algorithm. Corresponding conversion criterion should be chosen according to the material failure mode in engineering application.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第1期105-110,共6页 Journal of Xi'an Jiaotong University
基金 国家"973计划"资助项目(613102030302) 教育部跨世纪优秀人才培养计划资助项目(NCET-4138C2XB) 第二炮兵工程学院创新性探索研究基金资助项目(KX2008172)
关键词 光滑粒子流体动力学 有限元法 转换算法 冲击 smoothed particle hydrodynamics finite element method conversion algorithm impact
  • 相关文献

参考文献12

  • 1JOHNSON G R, STRYK R A, BEISSEL S R. SPH for high velocity impact computations [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4) 347-373. 被引量:1
  • 2LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. Astronomical Journal, 1977, 82(12) : 1013 -1024. 被引量:1
  • 3GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non- spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(11): 375-389. 被引量:1
  • 4JOHNSON G R, STRYK R A, BEISSEL S R, et al. An algorithm to automatically convert distorted finite elements into meshless particles during dynamic deformation [J]. International Journal of Impact Engineering, 2002, 27(10): 997-1013. 被引量:1
  • 5JOHNSON G R, STRYK R A. Conversion of 3D distorted elements into meshless particles during dynamic deformation [J].International Journal of Impact Engineering, 2003, 28(9): 947-966. 被引量:1
  • 6LIU Guirong, LIU Moubin. Smoothed particle hydrodynamics: a meshfree particle method [M]. Singapore: World Scientific, 2004: 35-40. 被引量:1
  • 7VIGNJEVIC R, DE VUYST T, CAMPBELL J C. A frictionless contact algorithm for meshless methods[J].ICCES, 2007, 3(2) 107-112. 被引量:1
  • 8MONAGHAN J J. SPH without a tensile instability [J]. Journal of Computational Physics, 2000, 159(2): 290-311. 被引量:1
  • 9强洪夫,高巍然.修正变光滑长度SPH方法及其应用[J].解放军理工大学学报(自然科学版),2007,8(5):419-424. 被引量:4
  • 10强洪夫,高巍然.完全变光滑长度SPH法及其实现[J].计算物理,2008,25(5):569-575. 被引量:22

二级参考文献33

  • 1LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. The Astronomical Journal,1977,82(12):1013-1024. 被引量:1
  • 2GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non- spherical stars[J]. Mon Not R astr Soc, 1977, 181: 375-389. 被引量:1
  • 3GINGOLD R A, MONAGHAN J J. Kernel estimates as a basis for general particle methods in hydrodynamics [J]. Comput Phys, 1982,46 : 429-453. 被引量:1
  • 4EVRARD A E. Beyond N-body: 3D cosmological gas dynamics[J]. Mon Not R astr Soc, 1988, 235: 911- 934. 被引量:1
  • 5HERNQUIST L. Some cautionary remarks about smoothed particle hydrodynamics[J]. The Astronomical Journal, 1993,404 :717-722. 被引量:1
  • 6NELSON R P, PAPALOZIZOU J C. Variable smoothing lengths and energy conservation in smoothed particle hydrodynamics[J]. Mon Not R astr Soc, 1994,270: 1-29. 被引量:1
  • 7A S, M AJ, P CJ. Adaptive smooth particle hydrodynamics and particle-particle coupled codes:energy and entropy conservation[J]. The Astronomical Journal, 1996,461:884-896. 被引量:1
  • 8SPRINGEL V, HERNQUIST L. Cosmological smoothed particle hydrodynamics simulations: the entropy equation[J]. Mon Not R astr Soc, 2002,333: 649-667. 被引量:1
  • 9THOMAS P A, COUCHMAN H M P. Simulating the formation of a cluster of galaxies[J]. Mon Not R astr Soc, 1992,257:11-31. 被引量:1
  • 10MONAGHAN J J. SPH compressible turbulence[J]. Mon Not R Astr Soc,2002,335(52):843-869. 被引量:1

共引文献22

同被引文献128

引证文献11

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部