期刊文献+

New method for calculating the Berry connection in atom-molecule systems

New method for calculating the Berry connection in atom-molecule systems
下载PDF
导出
摘要 In the mean-field theory of atom-molecule systems, where the bosonic atoms combine to form molecules, there is no usual U(1) symmetry, which presents an apparent hurdle for calculating the Berry connection in these systems. We develop a perturbation expansion method of Hannay's angle suitable for calculating the Berry curvature in the atom- molecule systems. With this Berry curvature, the Berry connection can be computed naturally. We use a three-level atom-molecule system to illustrate our results. In particular, with this method, we compute the curvature for Hannay's angle analytically, and compare it to the Berry curvature obtained with the second-quantized model of the same system. An excellent agreement is found, indicating the validity of our method. In the mean-field theory of atom-molecule systems, where the bosonic atoms combine to form molecules, there is no usual U(1) symmetry, which presents an apparent hurdle for calculating the Berry connection in these systems. We develop a perturbation expansion method of Hannay's angle suitable for calculating the Berry curvature in the atom- molecule systems. With this Berry curvature, the Berry connection can be computed naturally. We use a three-level atom-molecule system to illustrate our results. In particular, with this method, we compute the curvature for Hannay's angle analytically, and compare it to the Berry curvature obtained with the second-quantized model of the same system. An excellent agreement is found, indicating the validity of our method.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期74-78,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No. 10825417)
关键词 Berry phase NONLINEARITY Hannay's angle mean field theory Berry phase, nonlinearity, Hannay's angle, mean field theory
  • 相关文献

参考文献28

  • 1Berry M V 1984 Proc. R. Soc. A 392 45. 被引量:1
  • 2Zhang C W, Dudarev A M and Niu Q 2006 Phys. Rev. Lett. 97 040401. 被引量:1
  • 3Xiao D, Zhang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959. 被引量:1
  • 4Zanarti P and Rasetti M 1999 Phys. Lett. A 264 94. 被引量:1
  • 5Zhu S L and Wang Z D 2002 Phys. Rev. Lett. 89 097902. 被引量:1
  • 6Wu B, Liu J and Niu Q 2005 Phys. Rev. Lett. 94 140402. 被引量:1
  • 7Weinberg S 1989 Ann. Phys. 194 336. 被引量:1
  • 8Heslot A 1985 Phys. Rev. D 31 1341. 被引量:1
  • 9Kleppner D 2004 Phys. Today 57 12. 被引量:1
  • 10Wynar R, Freeland R S, Han D J, Ryu C and Heinzen D J 2000 Science 287 1016. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部