期刊文献+

基于GPU的粒子滤波并行算法 被引量:11

GPU-based parallel particle filter algorithm
原文传递
导出
摘要 针对粒子滤波跟踪算法计算量较大,需要在跟踪准确性与计算效率之间做出妥协的问题,分析了粒子滤波算法的并行性,提出了基于图像处理单元(GPU)平台的粒子滤波并行算法.将传统粒子滤波算法与GPU有效结合起来,充分利用GPU并行运算的性能,加快粒子滤波算法的计算速度.对所提出算法的计算性能与普通串行算法进行了对比,实验结果表明该算法在不降低跟踪准确性的同时,平均每帧处理时间显著减少. Particle filter algorithms for object tracking were widely studied because of its satisfying tracking effect and robustness. But high computational complexity of particle filter algorithms often results in the compromising between accurate tracking and computational efficiency, After analyzing the parallelism of particle filter algorithms, a parallel particle filter algorithm based on GPU was proposed. The computation performance of the proposed method and the traditional serial algorithm was contrasted and analyzed. Experiments show that the parallel algorithm presented can greatly improve the speed of the computation of each image frame.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第5期63-66,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
关键词 目标跟踪 粒子滤波 并行算法 图像处理单元 颜色模型 object tracking particle filter parallel algorithm graphic processing unit (GPU) color model
  • 相关文献

参考文献12

二级参考文献60

共引文献98

同被引文献83

  • 1李洪林,张海蕾,王希诚.一种量子化学有限元并行计算方法[J].大连理工大学学报,2005,45(4):469-472. 被引量:3
  • 2邹国辉,敬忠良,胡洪涛.基于优化组合重采样的粒子滤波算法[J].上海交通大学学报,2006,40(7):1135-1139. 被引量:43
  • 3郑宏,王景川,陈卫东.基于地图的移动机器人自定位与导航系统[J].机器人,2007,29(4):397-402. 被引量:23
  • 4Fishler E,Haimovich A,Blum R,et al.MIMO ra-dar:an idea whose time has come[C]∥Proceeding ofIEEE Radar Conference.Philadelphi:IEEE Press,2004:71-78. 被引量:1
  • 5Fishler E,Haimovich A,Blum R,et al.Spatialdiversity in radars-models and detection performance[J].IEEE Transactions on Signal Processing,2006,54(3):823-838. 被引量:1
  • 6Sheikhi A,Zamani A.Coherent detection for MIMOradars[C]∥IEEE Radar Conference.Waltham:IEEE,2007:302-307. 被引量:1
  • 7He Qian,Lehmann N,Blum R,et al.MIMO radarmoving target detection in homogeneous clutter[J].IEEE Transactions on Aerospace and Electronic Sys-tems,2010,46(3):1290-1301. 被引量:1
  • 8Lehmann N,Haimovich A,Blum R,et al.High res-olution capabilities of MIMO radar[C]∥Proceedingof Asilomar Conference on Signals,Systems andComputers.Pacific Grove:IEEE,2006:25-30. 被引量:1
  • 9Chin C,Pascal F,Ovarlez P,et al.MIMO radar de-tection in non-gaussian and heterogeneous clutter[J].IEEE Journal of Selected Topics in Signal Processing,2010,40(1):115-126. 被引量:1
  • 10Doucet A,Godsill S,Andrieu C.On sequentialMonte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(1):197-208. 被引量:1

引证文献11

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部