摘要
利用有限元法计算了量子化学中双原子分子的Hartree-Fock-Slater方程,用八节点等参元来离散所要求解的方程,在计算离散后的广义特征值问题时,采用迁移式子空间迭代法来求解.本方法能以较高的精度和效率求得所需的前q维特征值和特征向量,具有编程容易、子空间维数低和占用内存少的优点.所提方法也适用于并行计算,并行程序是在微机机群系统上发展的,用SPMD(singleprogrammultipledate)模式在MPI(messagepassinginterfaces)并行编程平台上实现,MPI系统用于处理机群节点间的通信.给出计算两个双原子分子——BH分子和LiH分子基态总能量的数值算例,获得了较精确的计算结果,显示了本方法的优越性.
A finite element method with 8-node isoparametric element is presented to solve the Hartree-Fock-Slater equation in quantum chemistry for diatomlc molecules. The subspace iteration method with modal transfer is developed to solve the generalized eigenvalue problem, the preceding q dimensional engenvalues and engenvectors needed can be obtained efficiently by means of this method.It has advantages such as simple programming organization, smaller core requirements and subspace with a lower dimension. This method is also suitable for parallel computing. The parallel program with SPMD (single program multiple date) is developed on a cluster of microcomputers. The MPI (message passing interfaces) system is used to handle communications among networkedmicrocomputers. Numerical examples of ground state general energy for BH and LiH demonstrate theeffectiveness of the method.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
2005年第4期469-472,共4页
Journal of Dalian University of Technology
基金
国家自然科学基金资助项目(10272030)
"九七三"国家基础研究发展规划资助项目(2004CB518901)
关键词
量子化学
有限元法
并行计算
迁移式子空间迭代法
quantum chemistry finite element method parallel computing subspace iteration method with modal transfer