期刊文献+

基于混合高斯模型和GPU的车辆闯红灯快速检测算法及实现 被引量:6

Fast Detection Algorithm and Its Implementation for Vehicles Red-light Running Based on Gaussian Mixture Model and GPU
下载PDF
导出
摘要 为实现对闯红灯车辆的准确快速检测,提出了基于混合高斯模型和GPU的车辆闯红灯检测算法。先用时间均值法根据监控系统运行后的第1个红灯期间采集的视频数据构建背景图像,再利用这个背景图像初始化混合高斯模型参数,进而采用混合高斯模型检测运动车辆;为实现实时检测,采用GPU并行计算对算法进行了实现。实验结果表明,该算法克服了实际道路监控视频中出现的混合高斯模型初始化参数选择不合理的问题,加快了混合高斯模型的收敛速度,实时性好。 In order to accurately and rapidly detect vehicles red-light running,this paper presents vehicles red-light running detection algorithm based on gaussian mixture model and GPU.First background image is constructed by mean-time algorithm from the video data during the first red light,and then the background image is used to initialize Gaussian mixture model parameters,and the gaussian mixture model is employed to test vehicle movement.In order to realize the real-time detection,the authors design and implement vehicles red-light running detection algorithm with GPU parallel computing.Experimental results show that it overcomes the problem that initialization parameters in Gaussian mixture model are unreasonably selected in real surveillance video and speeds up the convergence rate of Gaussian mixture model and the improved algorithm proposed in this paper is effective and real time.
作者 付诚 贾年
出处 《西华大学学报(自然科学版)》 CAS 2012年第2期9-13,共5页 Journal of Xihua University:Natural Science Edition
基金 四川省网络智能信息处理高校重点实验室(SGXZD1002-10) 西华大学研究生创新基金项目(Ycjj201119)
关键词 车辆闯红灯检测 混合高斯模型 GPU并行计算 时间均值法 detection for vehicles red-light running gaussian mixture model GPU parallel computing mean-time algorithm
  • 相关文献

参考文献7

二级参考文献31

  • 1陈鹏,钱徽,朱淼良.一种快速高斯粒子滤波算法[J].华中科技大学学报(自然科学版),2008,36(S1):291-294. 被引量:9
  • 2谭荣伟,雷蕴奇,陈柏生.夜间运动车辆检测[J].计算机工程与应用,2005,41(13):227-228. 被引量:13
  • 3吕国亮,赵曙光,赵俊.基于三帧差分和连通性检验的图像运动目标检测新方法[J].液晶与显示,2007,22(1):87-93. 被引量:36
  • 4Bors A G, Pitas I. Prediction and tracking of moving objects in image sequences [J].IEEE Trans. on Image Pro-cessing, 2000,9(8):1441-1445. 被引量:1
  • 5Lipton A, Fujiyoshi H, Patil R.Moving target classification and tracking from real-time video[C]//IEEE Press. IEEE Workshop on Applications of Computer Vision. 1998:8-14. 被引量:1
  • 6Libor Masek.Recognition of human iris patterns for biometric identification [EB/OL]. (2003) [2009].http: //www.esse.uwa. edu.au/pk/studentprojeets/libor/. 被引量:1
  • 7徐梅宜.虹膜图像处理技术研究[D].重庆:重庆大学,2004. 被引量:1
  • 8Stauffer C, Grmson W E L.Adaptive background mixture mod- els for real-time tracking[C]//Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition,Fort Co- lins, Colorado,USA.[S.l.] : IEEE Computer Society, 1999,2: 246-252,. 被引量:1
  • 9Pavlidis I, Morellas V, Tsiamyrtzis P, et al.Urban surveillance system: From the laboratory to the commercial world[J].Pro- ceedmgs of the IEEE,2001,89(10) : 1478-1497. 被引量:1
  • 10Power P W, Schoonees J A.Understanding background mixture models for foregrounds segmentation[C]//Proceedings of lmage and Vision Computing, New Zealand, Auckland, 2002: 267-271. 被引量:1

共引文献55

同被引文献54

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部