期刊文献+

基于遗传算法的孔群加工路径优化 被引量:10

Path optimization of the drilling hole based on genetic algorithm
下载PDF
导出
摘要 为提高孔群加工的效率,采用遗传算法对孔群加工空行程路径进行了优化。对遗传算法的实施过程进行了细致的描述,通过实例演示了遗传算法的孔群路径优化性能,并对遗传算法的运行效率及影响因素进行了研究。实验表明,运用遗传算法对孔群路径进行优化能提高孔群加工的效率,减小孔群加工中空行程的消耗;遗传算法运行中可以根据最佳个体的保持时间在一个代中加入活性因子,防止早熟的出现;遗传算法的各个参数对遗传算法的运行有一定的影响。选用合适的运行参数,本程序可应用于工程中,提高少批量孔加工的生产效率。 To improve the efficiency of holes drilling,the genetic algorithm was employed to optimum the air time of holes drilling in it.The implementation of genetic algorithm was descripted in detail,and the performance of the genetic algorithm was demonstrated using an example.Results showed that the optimization for holes drilling using genetic algorithm can improve the efficiency of drilling by reducing the cost of air time.
出处 《机械设计与制造》 北大核心 2011年第2期31-33,共3页 Machinery Design & Manufacture
基金 江苏省自然科学基金(BK2009662)
关键词 路径优化 遗传算法 孔群 Path optimization Genetic algorithm Holes
  • 相关文献

参考文献5

二级参考文献17

  • 1肖人彬,陶振武.孔群加工路径规划问题的进化求解[J].计算机集成制造系统,2005,11(5):682-689. 被引量:23
  • 2佟鑫,陈言秋,王君.皮革裁切加工算法[J].计算机辅助设计与图形学学报,2005,17(7):1642-1646. 被引量:8
  • 3张冠伟.基于分层工艺规划的柔性生产方案设计技术研究.天津大学博士论文[M].,2001.. 被引量:1
  • 4[4]ANAND S,McCORD C,SHARMA R.An integrated machine vision based system for solving the nonconvex cuttings stock problem using genetic algorithm[J].Journal of Manufacturing Systems,1999,8(6):114-119. 被引量:1
  • 5[5]KOLAHAN Farhada,LIANG Minga.Optimization of hole-making operations:a tabu-search approach[J].International Journal of Machine Tools and Manufacture,2000,40(12):1735-1753. 被引量:1
  • 6[6]KHAN W A,HAYHURST D R,CANNINGS C.Determination of optimalpath under approach and exit constraints[J].European Journal of Operational Research,1999,117(2):310-325. 被引量:1
  • 7[7]WANG K P,HUANG L,ZHOU C G,et al.Particle swarm optimization for traveling salesman problem[C]//WANG Xizhao.2003 International Conference on Machine Learning and Cybernetics.November 2-5,2003,Xi'an,China.Piscataway,New Jersey:IEEE Service Center,2003(5):1583-1585. 被引量:1
  • 8[8]LIPES H S,COELHO L S.Particle swarm optimization with fast local search for the blind traveling salesman problem[C]//NEDJAH Nadia.5th International Conference on Hybrid Intelligent Systems Proceedings.November 6 -9,2005,Rio de Janeiro,Brazil.Piscataway,New Jersey:IEEE Service Center,2005:245-250. 被引量:1
  • 9[9]Van den F Bergh.An analysis of particle swarm optimizers[D].Pretoria:University of Pretoria,2001. 被引量:1
  • 10[10]CUI Zhihua,ZENG Jianchao,CAI Xingjuan.A new stochastic particle swarm optimizer,evolutionary computation[C] //GARRISON W.Conference Evolutionary Computation 2004.June 19-23,2004,Greenwood,Portland,USA.Piscataway,New Jersey:IEEE Service Center,2004(1):316-319. 被引量:1

共引文献21

同被引文献85

引证文献10

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部