期刊文献+

新的求解钻削路径优化问题算法研究 被引量:4

Research of new algorithm for drilling path optimization
下载PDF
导出
摘要 将粒子群优化算法应用到离散空间的群孔钻削路径优化之中。由于基本粒子群算法不能保证全局或局部收敛,在算法数学模型的基础上,引入重新生成停止进化微粒的方式对算法加以改进,使改进的算法具有全局收敛能力。通过建立序交换元和序交换集对算法的操作算子进行改进,满足钻削路径优化问题中整数编码的需要。实验表明,新的算法具有实现简单,收敛速度快,能够实现全局收敛的优点。 In this paper a new approach based on the particle swarm optimization (PSO) algorithm is repre- sents for solving the drilling path optimization problem belonging to discrete space.Because the standard parti- cle swarm algorithm is not guaranteed to be global convergence or local convergence,based on the mathemati- cal model,the algorithm is improved by adopting the method of generating the stop evolution particle over a- gain to get the ability of convergence on the global optimization solution.And the operators are improved by establishing the Order Exchange Unit and Order Exchange List to satisfy the need of integer coding in drilling path optimization.The experiment indicates that the improved algorithm has the characteristics of easy real- ization,fast convergence speed and better global convergence capability.Hence the new PSO can play a role in solving the problem of drilling path optimization in drilling holes.
作者 朱光宇
出处 《中国工程机械学报》 2006年第2期215-219,共5页 Chinese Journal of Construction Machinery
关键词 粒子群优化算法 路径优化 全局收敛 particle swarm optimization algorithm path optimization global convergence
  • 相关文献

参考文献10

  • 1周鲲,邵华.基于Hopfield算法的孔群加工路径规划[J].模具技术,2003(1):48-50. 被引量:14
  • 2肖人彬,陶振武.孔群加工路径规划问题的进化求解[J].计算机集成制造系统,2005,11(5):682-689. 被引量:23
  • 3佟鑫,陈言秋,王君.皮革裁切加工算法[J].计算机辅助设计与图形学学报,2005,17(7):1642-1646. 被引量:8
  • 4[4]ANAND S,McCORD C,SHARMA R.An integrated machine vision based system for solving the nonconvex cuttings stock problem using genetic algorithm[J].Journal of Manufacturing Systems,1999,8(6):114-119. 被引量:1
  • 5[5]KOLAHAN Farhada,LIANG Minga.Optimization of hole-making operations:a tabu-search approach[J].International Journal of Machine Tools and Manufacture,2000,40(12):1735-1753. 被引量:1
  • 6[6]KHAN W A,HAYHURST D R,CANNINGS C.Determination of optimalpath under approach and exit constraints[J].European Journal of Operational Research,1999,117(2):310-325. 被引量:1
  • 7[7]WANG K P,HUANG L,ZHOU C G,et al.Particle swarm optimization for traveling salesman problem[C]//WANG Xizhao.2003 International Conference on Machine Learning and Cybernetics.November 2-5,2003,Xi'an,China.Piscataway,New Jersey:IEEE Service Center,2003(5):1583-1585. 被引量:1
  • 8[8]LIPES H S,COELHO L S.Particle swarm optimization with fast local search for the blind traveling salesman problem[C]//NEDJAH Nadia.5th International Conference on Hybrid Intelligent Systems Proceedings.November 6 -9,2005,Rio de Janeiro,Brazil.Piscataway,New Jersey:IEEE Service Center,2005:245-250. 被引量:1
  • 9[9]Van den F Bergh.An analysis of particle swarm optimizers[D].Pretoria:University of Pretoria,2001. 被引量:1
  • 10[10]CUI Zhihua,ZENG Jianchao,CAI Xingjuan.A new stochastic particle swarm optimizer,evolutionary computation[C] //GARRISON W.Conference Evolutionary Computation 2004.June 19-23,2004,Greenwood,Portland,USA.Piscataway,New Jersey:IEEE Service Center,2004(1):316-319. 被引量:1

二级参考文献9

共引文献34

同被引文献35

引证文献4

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部