期刊文献+

一种自适应多样性保持的多目标粒子群算法 被引量:5

Multi-Objective Particle Swarm Optimizer with Adaptive Diversity Maintenance
下载PDF
导出
摘要 提出一种自适应多样性保持的多目标粒子群算法(ADMMOPSO)。该算法引入多样性保持阈值(λα)来控制非劣解的分布,当多样性指标高于阈值λα时,引入一种基于网格的全局最优粒子的选择策略增加种群向真实Pareto前沿收敛的概率,并提升非劣解的多样性。通过4个测试问题和3个测试标准,并与其他算法进行比较,结果表明ADMMOPSO获得了质量较高的非劣解。 An improved multi-objective particle swarm optimizer with adaptive diversity maintenance is proposed(ADMMOPSO for short).In ADMMOPSO,the diversity maintenance threshold value(λα) is introduced to control the non-inferior solution diversity.When the diversity maintenance value is equal or more than λα,the selection strategy of the global best performing particle based on the grid is introduced to increase the probability of convergence to the true Pareto front and improve the diversity.Through extensive comparison with other classical methods on three performance metrics in four test problems,the results show that ADDMOPSO has good performance.
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2011年第3期296-300,共5页 Journal of University of Jinan(Science and Technology)
基金 山东省科技攻关项目(2009GG10001008) 贵州教育厅社科项目(0705204) 遵义师院课题(2007018 基07015 07017)
关键词 自适应 多样性保持 多目标优化 粒子群算法 adaptive diversity maintenance multi-objective optimization particle swarm optimizer
  • 相关文献

参考文献12

  • 1KENNEDY J, EBERHART R C. Particle swarm optimization [ C ]. Proceedings of IEEE International Gonference on Neural Networks. Washington, DC : IEEE Press, 1995 : 1942 - 1948. 被引量:1
  • 2REDDY M J, KUMAR D N. An efficient multi-objective optimiza- tion algorithm based on swarm intelligence for engineering design [ J]. Engineering Optimization,2007,39 ( 1 ) :49 - 68. 被引量:1
  • 3COELLO C, PULTDO G T. Handling multiple objectives with parti- cle swarm optimization [ J ]. IEEE Transactions on Evolutionary Computation, 2004,8 ( 3 ) :256 - 279. 被引量:1
  • 4LEONG W F, YEN G G. PSO-based multiobjective optimization with dynamic population size and adaptive local archives [ J ].IEEE Transactions on Systems, Man, and Cybernetics-Part B : Cy- bernetics,2008 ,58 (5) : 1270 - 1293. 被引量:1
  • 5YEN G G, LENG W F. Dynamic multiple swarms in multiobjective particle swarm optimization [ J ]. IEEE Transactions on Systems, Man and Cybernetics-Part A : Systems and Humans, 2009,39 (4) : 890 - 911. 被引量:1
  • 6赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 7罗辞勇,陈民铀,韩力.适应性粒子群寻优算法Ⅱ[J].控制与决策,2009,24(6):859-863. 被引量:5
  • 8LU H M, YEN G G. Rank-density-based muhiobjective genetic al- gorithm and benchmark test function study[ J]. IEEE Transactions on Evolutionary Computation ,2003,7 (4) :256 - 279. 被引量:1
  • 9DEB K. Multi-objective optimization using evolutionary algorithms [ M]. UK:John Wiley and Sons,2001:63 -74. 被引量:1
  • 10DEB K, GOLDBERGS D E. An investigation of niche and species formation in genetic function optimization [ C ]. In:the Third Inter- national Conference on Genetic Algorithms, Piseataway, NJ ; 1989: 42 -50. 被引量:1

二级参考文献12

共引文献136

同被引文献44

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部