期刊文献+

一种非线性改变惯性权重的粒子群算法 被引量:60

Modified particle swarm optimizer using non-linear inertia weight
下载PDF
导出
摘要 引入递减指数和迭代阈值对基本粒子群算法中线性递减权策略进行了改进,在优化迭代过程中,惯性权重随当前迭代次数、指数递减率和迭代阈值非线性变化。对三种具有代表性的测试函数进行了仿真实验,并与基本粒子群算法以及其他改进的粒子群算法进行了比较,结果表明,文中所提的改进粒子群算法在搜优精度、收敛速度以及稳定性等方面有明显优势。 A modification to Linearly Decreasing Weight strategy in standard Particle Swarm Optimization is taken by introducing descending index and iterative threshold.The inertia weight varies non-linearily with the changing of currently iterative order,exponent descending rate and iterative threshold.The new method is tested with three representative benchmarks and a compare is made with the standard Particle Swarm Optimization as well as other advanced Particle Swarm Optimization.h is demonstrated that there are evident superiorities in computational precision ,searching speed and steady convergence.
作者 王丽 王晓凯
出处 《计算机工程与应用》 CSCD 北大核心 2007年第4期47-48,92,共3页 Computer Engineering and Applications
基金 山西省自然科学基金(the Natural Science Foundation of Shanxi Province of China under Grant No.20051033)。
关键词 粒子群算法 惯性权重 递减指数 迭代阈值 Particle Swarm Optimization inertia weight descending exponent iterative threshold
  • 相关文献

参考文献7

二级参考文献24

  • 1[1]Kennedy J, EberhartRC. Particle swarm optimization [A]. Proceedings of IEEE International Conference on Neural Networks [C]. Piscataway, NJ: IEEE Press, 1995.1942 ~ 1948. 被引量:1
  • 2[2]Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science [ C]. Nagoya, Japan: IEEE Press, 1995. 39~43. 被引量:1
  • 3[3]Eberhart R C, Simpson P K, Dobbins R W. Computational Intelligence PC Tools [M]. Boston, MA: Academic Press Professional,1996. 被引量:1
  • 4[4]Shi Y, Eberhart R C. A modified particle swarm optimizer [A].Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 1998.303~308. 被引量:1
  • 5[5]Shi Y, Eberhart R C. Empirical study of particle swarm optimization [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, NJ: IEEE Press, 1999.1945 ~ 1950. 被引量:1
  • 6[6]Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Seoul, Korea: IEEE Press, 2001. 101 ~106. 被引量:1
  • 7[7]Clerc M, Kennedy J. The particle swarm - explosion, stability,and convergence in a multidimensional complex space [ J ]. IEEE Transactions on Evolutionary Computation, 2002,6( 1 ): 58 ~73. 被引量:1
  • 8[8]Eberhart R C, Shi Y. Comparing inertia weight and constriction factors in particle swarm optimization [ A ]. Proceedings of the IEEE Congress on Evolutionary Computation [ C ]. San Diego,CA: IEEE Press, 2000.84 ~ 88. 被引量:1
  • 9[9]Miranda V, Fonseca N. EPSO-best-of-two-worlds meta-heuristic applied to power system problems [ A ]. Proceedings of the IEEE Congress on Evolutionary Computation [ C ]. Honolulu, Hawaii,USA: IEEE Press, 2002. 1080 ~ 1085. 被引量:1
  • 10Clerc M, Kennedy J. The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6( 1 ) : 58-73. 被引量:1

共引文献236

同被引文献500

引证文献60

二级引证文献369

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部