期刊文献+

基于动态粒子数的微粒群优化算法 被引量:12

Particle Swarm Optimization Based on Dynamic Population Size
下载PDF
导出
摘要 提出了基于动态粒子数的微粒群算法,并建立了粒子数变化函数.该函数包含粒子数衰减趋势项和周期振荡项.衰减趋势项能够在种群向最优解不断收敛的过程中逐渐减少粒子数,以提高粒子效率.周期振荡项中的递增阶段代表了新粒子的随机出现,以增加粒子群的多样性,而周期振荡项中的递减阶段代表了探索性能差的粒子逐渐消亡,以提高优化效率.对4个标准函数进行测试,仿真结果表明该算法能有效地减少计算量,并显著提高全局搜索性能. The dynamic particle population based particle swarm optimization algorithm ( DPPPSO ) is introduced, in which the time-variant population size function is constructed, which contains an attenuation term and an undulation term. The attenuation term makes the population decrease gradually when the particles are converging to the optimum in order to reduce the computational cost ; the undulation term consists of periodical phases of ascending and descending. In the ascending phase, new particles are randomly produced to avoid the particle swarm being trapped in the local optimal point; while in the descending phase, particles with lower ability gradually die so that the optimization efficiency is improved. The test on four benchmark functions shows that the proposed algorithm effectively reduces the computational cost and greatly improves the global search ability.
出处 《信息与控制》 CSCD 北大核心 2008年第1期18-27,共10页 Information and Control
关键词 微粒群优化算法 动态粒子数 种群 群体多样性 particle swarm optimization algorithm dynamic particle population population swarm diversity
  • 相关文献

参考文献9

  • 1Kennedy J, Eberhart R C. Particle swarm optimization [A]. Proceedings of the IEEE International Conference on Neural Networks [C]. Piscataway, NJ, USA: IEEE, 1995. 1942 - 1948. 被引量:1
  • 2Shi Y, Eberhart R C. Empirical study of particle swarm optimization [ A ]. Proceedings of the 1999 Congress on Evolutionary Computation [ C]. Piscataway, NJ, USA: IEEE, 1999. 1945 - 1950. 被引量:1
  • 3赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 4Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3) : 240 - 255. 被引量:1
  • 5Fan H Y. A modification to particle swarm optimization algorithm [J]. Engineering Computations, 2002, 19(7 -8) : 970-989. 被引量:1
  • 6van den Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization [ J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3) : 225 - 239. 被引量:1
  • 7Kennedy J, Mendes R. Neighborhood topologies in fully-informed and best-of-neighborhood particle swarms [ A ]. Proceedings of the 2003 IEEE International Workshop on Soft Computing in Industrial Applications [C]. Piscataway, NJ, USA': IEEE, 2003. 45 - 50. 被引量:1
  • 8El-Gallad A, El-Hawary M, Sallam A, et al. Enhancing the particle swarm optimizer via proper parameters selection [ A ]. Proceedings of the 2002 IEEE Canadian Conference on Electrical & Computer Engineering [ C ]. Piscataway, NJ, USA: IEEE,2002. 792 - 797. 被引量:1
  • 9Shi Y, Eberhart R C. Parameter Selection in Particle Swarm Optimization [ R ]. Indianapolis, Indiana, USA : Indiana University- Purdue University at Indianapolis, 1998. 被引量:1

二级参考文献2

共引文献133

同被引文献109

引证文献12

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部