期刊文献+

量子连续粒子群优化算法及其应用 被引量:10

Quantum continuous particle swarm optimization algorithm and its application
原文传递
导出
摘要 提出了基于量子理论的连续粒子群优化(Continuous Particle Swarm Optimization based on Quantum Methodology,CPSO-QM)算法,主要是采用了量子理论中的叠加态特性和概率表达特性.其中,叠加态特性可以使单个粒子表达更多的状态,潜在地增加了种群的多样性;概率表达特性是将粒子的状态以一定的概率表达出来.在基准函数的实验测试中,对比其它常用算法,结果显示本文提出的算法性能较好.在实际应用中,以丙烯腈反应器作为建模研究对象,提出了三种进化策略,实验结果显示,这三种策略训练的神经网络软测量模型都可以较好地预测丙烯腈的收率. Continuous particle swarm optimization algorithm based on quantum methodology is propesed in the paper. The algorithm mainly uses superposition characteristic and probability representation. Superposition characteristic can make a single particle present several states. In other words, the characteristic potentially increases population diversity. Probability representation is to make particle's state be presented according to a certain probability. Compared with other methods for test function in the experiment, the results demonstrate the proposed algorithm is better and more effective. Additionally, acrylonitrile reactor is used as modeling object in the real application. Three evolutional schemes are used. The experimental results show that the networks trained can the better predict the acrylonitrile yield through using three evolutional schemes.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2008年第5期122-130,共9页 Systems Engineering-Theory & Practice
关键词 进化算法 粒子群 量子计算 软测量模型 evolutionary algorithm particle swarm quantum computing soft sensing model
  • 相关文献

参考文献12

  • 1Kennedy J, Eberhart R C. Particle swarm optimization[ C]//Proceedings of IEEE International Conference on Neural Networks. Perth, WA, Australia, 1995: 1942-1948. 被引量:1
  • 2Kennedy J, Eberhart R C. A new optimizer using particle swarm theory[ C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995 : 39 - 43. 被引量:1
  • 3曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 4赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 5Han K, Kim J H. Genetic quantum algorithm and its application to combinatorial optimization problems[ C]//Proceedings of the 2000 IEEE Conference on Evolutionary Computation, Piscataway, IEEE Press, 2000:1354 - 1360. 被引量:1
  • 6王凌,吴昊,唐芳,郑大钟,金以慧.混合量子遗传算法及其性能分析[J].控制与决策,2005,20(2):156-160. 被引量:45
  • 7陈辉,张家树,张超.实数编码混沌量子遗传算法[J].控制与决策,2005,20(11):1300-1303. 被引量:41
  • 8Zhang G X, Li N, Jin W D. Novel quantum genetic algorithm and its applications[J]. Front Electr Electron Eng China, 2006, 1 : 31 - 36. 被引量:1
  • 9Sun J, Xu W B, Liu J. Parameter selection of quantum-behaved particle swarm optimization[C]//ICNC 2005, Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg, 2005:543- 552. 被引量:1
  • 10Sun J, Xu W B, Fang W. Quantum-behaved particle swarm optimization algorithm with controlled diversity[ C]//ICCS 2006, Part Ⅲ, Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg, 2006: 847- 854. 被引量:1

二级参考文献18

  • 1P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962 被引量:1
  • 2E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944 被引量:1
  • 3M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73 被引量:1
  • 4F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30 被引量:1
  • 5F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001 被引量:1
  • 6王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001) 被引量:1
  • 7J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975 被引量:1
  • 8Srinivas M, Patnaik L M. Genetic Algorithms: A Survey [J]. Computer , 1994,27(6): 17-26. 被引量:1
  • 9Bennett C H, Shor P. Quantum Information Theory[J]. IEEE Trans on Information Theory, 1998,44 (6):2724-2742. 被引量:1
  • 10Narayanan A, Moore M. Quantum-inspired Genetic Algorithms [A ]. Proc of IEEE Int Conf on Evolutionary Computation [C]. Nagoya: IEEE Press,1996: 61-66. 被引量:1

共引文献365

同被引文献120

引证文献10

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部