期刊文献+

重大工程论证专家选择及其自适应遗传算法 被引量:2

Selection of demonstration experts for momentous project based on adaptive genetic algorithm
原文传递
导出
摘要 论证专家选择是重大工程可行性论证时的一个复杂决策问题.对此,根据论证专家团队需求构建了论证专家选择模型,并设计了自适应遗传算法进行求解.数值算例验证了所提出的模型和算法的有效性和可行性,可为决策者提供不同准则下的论证专家的最优组合方案.最后对算法进行了分析,给出了解决这类问题的算法控制参数的合理组合范围. The optimization grouping of demonstration experts is one of complex decision-making problems before making feasibility study for momentous project. Therefore, according to the requirements on group of demonstration experts, this paper proposes a mathematical model for selecting demonstration experts for the momentous project and develops an adaptive genetic algorithm to solve it. A numerical example is examined to show that the constructed model and the developed algorithm are validity and applicability to solve the problem. Other six alternatives on different criteria for this problem are presented to decision maker. Finally, on the basis of analysis on property of the developed algorithm, a reasonable rang of control parameters of the algorithm is given to solve such problem.
出处 《控制与决策》 EI CSCD 北大核心 2011年第3期369-375,共7页 Control and Decision
基金 国家自然科学基金项目(70631003 90718037 70801024) 教育部博士点基金项目(200803590007).
关键词 重大工程论证 论证专家选择 自适应遗传算法 控制参数 momentous project demonstration selection of demonstration experts adaptive genetic algorithm control parameter
  • 相关文献

参考文献20

  • 1卢广彦,付超,吴金园,刘源.重大工程决策过程与决策特征研究——以三峡工程为例[J].中国科技论坛,2008(8):20-24. 被引量:11
  • 2Wi H, Oh S, Mun J, et al. A team formation model based on knowledge and collaboration[J]. Expert Systems with Application, 2009, 36(5): 9121-9134. 被引量:1
  • 3Shin H S, Huang L C, Shyur H J. Recruitment and selection processes through an effective GDSS[J]. Computers and Mathematics with Applications, 2005, 50(10/11/12): 1543- 1558. 被引量:1
  • 4Bhadury J, Mighty E J, Damar H. Maximizing workforce diversity in project teams: A network flow approach[J]. Omega, 2000, 28(2): 143-153. 被引量:1
  • 5Wi H, Mun J, Oh S, et al. Modeling and analysis of project team formation factors in a project-oriented virtual organization(ProVO)[J]. Expert Systems with Applications, 2009, 38(3): 5775-5783. 被引量:1
  • 6Chien C F, Chen L E Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry[J]. Expert Systems with Applications, 2008, 34(1): 280-290. 被引量:1
  • 7Shipley M F, Johnson M. A fuzzy approach for selecting project membership to achieve cognitive style goals[J]. European J of Operational Research, 2009, 192(3): 918- 928. 被引量:1
  • 8卢广彦.重大工程决策失误与重大工程决策机制构建[J].中国科技论坛,2009(4):30-35. 被引量:12
  • 9Holland J H. Adaptation in natural and artificial systems: An introductory analysis with application to biology, control, and artificial intelligence[M]. 2nd ed. Cambridge: The MIT Press, 1992. 被引量:1
  • 10Goldberg D E. Genetic algorithm in search, optimization and machine learning[M]. MA: Addison Wesley Publishing Company, 1989. 被引量:1

二级参考文献64

共引文献457

同被引文献18

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部