期刊文献+

基于遗传算法和概率神经网络提高脑机接口中脑电信号识别率

Improving the Recognition Rate of EEG in BCI Based on Genetic Algorithm and Probabilistic Neural Network
下载PDF
导出
摘要 针对脑机接口(BC I)研究中存在脑电信号(EEG)识别率低的问题,提出一种基于遗传算法(GA)和概率神经网络(PNN)的GA-PNN识别方法.用该方法对EEG提取时频特征,构成模式识别的初始特征.以训练样本识别正确率为适应度函数,采用GA对初始特征进行组合优化.基于优选后的特征,用PNN对测试样本进行分类.该方法使EEG识别正确率达到92.49%,与2003年BC I国际竞赛最好的处理结果(88.7%)相比,提高近4%,为BC I中EEG的识别提供了有效的手段. Aimed at the problem that the recognition rate of electroencephalogram(EEG) is low in braincomputer interfaces(BCIs), a GA-PNN recognition method based on genetic algorithm(GA) and probabilistic neural network(PNN) was presented. EEG features from time domain and frequency domain are extracted. These features form the initial features for pattern recognition. Then,a GA is used to combine and optimize initial features. The fitness function of the GA is the recognition rate of training samples. Finally, a PNN is used to classify testing samples based on these optimized features. The recognition rate can obtain 92.49%, which improves about 4% compared with the best result (88.7 % ) of 2003 BCI competition. The method provides an effective way to EEG recognition in BCIs.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2005年第10期1689-1692,共4页 Journal of Shanghai Jiaotong University
关键词 脑机接口 脑电信号 遗传算法 概率神经网络 组合优化 brain-computer interface (BCI) electroencephalogram (EEG) genetic algorithm (GA) probabilistic neural networks(PNN) combinatorial optimization
  • 相关文献

参考文献8

  • 1Wolpaw J R, Birbaumer N, McFarland D J. Braincomputer interfaces for communication and control [J]. Clin Neurophysiol, 2002, 113: 767- 791. 被引量:1
  • 2Wolpaw J R, McFarland D J, Vaughan T M. Braincomputer interface research at the wadsworth center [J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 222-226. 被引量:1
  • 3Wolpaw J R, Birbaumer N, Heetderks W J. Brain computer interface technology : A review of the first international meeting[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8 (2): 164- 173. 被引量:1
  • 4Vaughan T M. Brain-computer interface technology:A review of the second international meeting[J]. IEEE Transactions on Rehabilitation Engineering, 2003, 11(2): 94-109. 被引量:1
  • 5李敏强等著..遗传算法的基本理论与应用[M].北京:科学出版社,2002:425.
  • 6陈国良等编著..遗传算法及其应用[M].北京:人民邮电出版社,1996:433.
  • 7许东,吴铮编著..基于MATLAB 6.x的系统分析与设计 神经网络[M].西安:西安电子科技大学出版社,1998:239.
  • 8玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.. 被引量:396

共引文献395

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部