期刊文献+

一种基于栅格的动态粒子数微粒群算法

Grid based dynamic particle population particle swarm optimization
原文传递
导出
摘要 微粒群算法的全局搜索性能容易受到局部极值点的影响.对此,提出一种基于栅格的动态粒子数微粒群算法(GB-DPPPSO).通过设计栅格信息更新策略、粒子产生策略和粒子消灭策略,可以根据种群搜索情况动态控制粒子数变化,以保持种群多样性,提高全局搜索性能.通过对4个典型数学验证函数的仿真实验,表明了该算法相对于DPPPSO在全局搜索成功率和搜索效率两方面均有明显改进. Particle swarm optimization(PSO) is easy to be trapped by the local optimum. Therefore, the grid based dynamic particle population PSO (GB-DPPPSO) is proposed. GB-DPPPSO has three strategies, grid information update slrategy, particle generalization strategy and particle vanishing strategy, which keep the diversity of swarm through convergence and enhance the global searching ability. Simulation tests on four benchmark functions prove that the method performs better than DPPPSO on global successful searching probability and searching efficiency.
出处 《控制与决策》 EI CSCD 北大核心 2009年第6期864-868,共5页 Control and Decision
基金 国家自然科学基金重点项目(60634030) 高等学校博士学科点专项科研基金项目(20060699032) 教育部新世纪优秀人才支持计划(NCET-06-878) 西北工业大学科技创新基金项目(W016143)
关键词 微粒群算法 栅格 动态粒子数 Particle swarm optimization Grid Dynamic particle population
  • 相关文献

参考文献10

  • 1Kennedy J, Eberhart R C. Particle swarm optimization [C]. Proc of the IEEE Int Conf on Neural Networks. Piscataway: IEEE, 1995: 1942-1948. 被引量:1
  • 2Shi Y, Eberhart R C. Empirical study of particle swarm optimization [C]. Proc of the 1999 Congress on Evolutionary Computation. Piscataway: IEEE, 1999: 1945-1950. 被引量:1
  • 3赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 4Ratnaweera A, Halgamuge S K, Watson H C. Self- organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 240-255. 被引量:1
  • 5Fan H Y. A modification to particle swarm optimization algorithm [J]. Engineering Computations, 2002, 19(7/ 8) : 970-989. 被引量:1
  • 6Kennedy J, Mendes R. Neighborhood topologies in fullinformed and best-of-neighborhood partiele swarms[C]. Proc of the 2003 IEEE Int Workshop on Soft Computing in Industrial Application. Piscataway, 2003: 45-50. 被引量:1
  • 7Arabas J, Michalewicz Z, Mulawka J. GAVaPS - A genetic algorithm with varying population size[C]. Proe of Congress on Evolutionary Computation. Orlando, 1994: 73-74. 被引量:1
  • 8Zhuang N, Benten M, Cheung P. Improved variable ordering of BBDS with novel genetic algorithm[C]. Proc of IEEE Int Symposium on Circuits and Systems. Atlanta, 1996: 414-417. 被引量:1
  • 9Alander J. On optimal population size of genetic algorithms[C]. Proc of IEEE Int Conf on Computer Systems and Software Engineering. Silverspring, 1992: 65-70. 被引量:1
  • 10耶刚强,孙世宇,梁彦,王睿,潘泉.基于动态粒子数的微粒群优化算法[J].信息与控制,2008,37(1):18-27. 被引量:12

二级参考文献11

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2Kennedy J, Eberhart R C. Particle swarm optimization [A]. Proceedings of the IEEE International Conference on Neural Networks [C]. Piscataway, NJ, USA: IEEE, 1995. 1942 - 1948. 被引量:1
  • 3Shi Y, Eberhart R C. Empirical study of particle swarm optimization [ A ]. Proceedings of the 1999 Congress on Evolutionary Computation [ C]. Piscataway, NJ, USA: IEEE, 1999. 1945 - 1950. 被引量:1
  • 4Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3) : 240 - 255. 被引量:1
  • 5Fan H Y. A modification to particle swarm optimization algorithm [J]. Engineering Computations, 2002, 19(7 -8) : 970-989. 被引量:1
  • 6van den Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization [ J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3) : 225 - 239. 被引量:1
  • 7Kennedy J, Mendes R. Neighborhood topologies in fully-informed and best-of-neighborhood particle swarms [ A ]. Proceedings of the 2003 IEEE International Workshop on Soft Computing in Industrial Applications [C]. Piscataway, NJ, USA': IEEE, 2003. 45 - 50. 被引量:1
  • 8El-Gallad A, El-Hawary M, Sallam A, et al. Enhancing the particle swarm optimizer via proper parameters selection [ A ]. Proceedings of the 2002 IEEE Canadian Conference on Electrical & Computer Engineering [ C ]. Piscataway, NJ, USA: IEEE,2002. 792 - 797. 被引量:1
  • 9Shi Y, Eberhart R C. Parameter Selection in Particle Swarm Optimization [ R ]. Indianapolis, Indiana, USA : Indiana University- Purdue University at Indianapolis, 1998. 被引量:1
  • 10李宏,唐焕文,郭崇慧.一类进化策略的收敛性分析[J].运筹学学报,1999,3(4):79-83. 被引量:20

共引文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部