期刊文献+

基于聚类的NSGA-Ⅱ算法 被引量:2

Non-dominated Sorting Genetic Algorithm Ⅱ Based on Clustering
下载PDF
导出
摘要 采用精英策略的非支配排序遗传算法(NSGA-II)种群收敛分布不均匀,全局搜索能力较弱。针对该问题,基于现有的算法,提出一种基于聚类学习机制的多目标进化算法KMCNSGA-II。利用K均值聚类对目标函数和个体分别进行聚类,对聚类后的个体进行局部学习,以提高适应度。将该算法应用于经典的多目标约束和非约束测试函数中,通过收敛性指标世代距离和多样性指标?进行性能评价。实验结果表明,与NSGA-II算法相比,该算法在算法收敛性和种群多样性保持方面均有明显提高。 According to the uneven distribution of population convergence and poor performance in global search of Non-dominated Sorting Genetic Algorithm II(NSGA-II), a multi-objective evolutionary algorithm, called K-means clustering non-dominated sorting genetic algorithm II(KMCNSGAII) is proposed with combining the theory and the existing algorithm. The KMCNSGAII uses K-means clustering technology and at the same time clusters both all the objective functions and individuals respectively. Then the learning and improvement method is used with respect to individuals after clustering. The KMCNSGAII algorithm is applied to several classical unconstrained and constrained test functions. Experimental results demonstrate that the KMCNSGAII achieves good results with performance evaluation about convergence indicator and diversity indicator, in convergence and diversity of population both are improved significantly compared with NSGA-II.
出处 《计算机工程》 CAS CSCD 2013年第12期186-190,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61165002) 甘肃省自然科学基金资助项目(1010RJZA019)
关键词 多目标进化算法 多目标优化 K均值聚类 非支配排序遗传算法II 局部搜索 PARETO前沿 Multi-objective Evolutionary Algorithm(MOEA) multi-objective optimization K-means clustering Non-dominated Sorting
  • 相关文献

参考文献13

  • 1郑金华著..多目标进化算法及其应用[M].北京:科学出版社,2007:276.
  • 2Scaffer J D.Multiple Objective Optimization with Vector Evaluated Genetic Algorithms[C]//Proceedings of the 1st International Conference on Genetic Algorithm.Pittsburgh,USA:[s.n.],1985. 被引量:1
  • 3Deb K,Pratap A,Agarwal S,et al.A Fast Elitist Multi-objective Genetic Algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197. 被引量:1
  • 4Srinivas N,Deb K.Multiobjective Function Optimization Using Nondominated Sorting Genetic Algorithm[J].Evolu-tionary Computation,1995,2(3):221-248. 被引量:1
  • 5Hartigan J A,Wong M A.A K-Means Clustering Algorithm[J].Applied Statistics,1979,28(1):100-108. 被引量:1
  • 6Battiti R,Mauro B,Franco M.Reactive Search and Intelligent Optimization[R].Universita di Trento:Technical Report:DIT-07-049,2008. 被引量:1
  • 7MacQueen J B.Some Methods for Classification and Analysis of Multivariate Observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability.Berkeley,USA:University of California Press,1967. 被引量:1
  • 8van Veldhuizen D A,Lamont G B.Multiobjective Evolu-tionary Algorithm Research:A History and Analysis[R].Universit a di Pisa:Technical Report:TR-98-03,1998. 被引量:1
  • 9Chuang Yaochen,Chen Chyi-Tsong.A Study on Real-coded Genetic Algorithm for Process Optimization Using Ranking Selection,Direction-based Crossover and Dynamic Muta-tion[C]//Proc.of IEEE Congress on Evolution Computation.[S.l.]:IEEE Press,2011. 被引量:1
  • 10Sivaraj R,Ravichandran T.A Review of Selection Methods in Genetic Alorithm[J].International Journal of Engineering Science and Technology,2011,3(5):3792-3797. 被引量:1

同被引文献20

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部