期刊文献+

空间域容量控制多分辨粒子滤波算法 被引量:2

Spatial Size of Sample Set Control-Based Multiresolutional Particle Filter
下载PDF
导出
摘要 针对多分辨分析方法用于降低粒子滤波样本集容量时,因多次迭代引起的样本数急剧下降而导致滤波性能不稳定的问题,提出一种通过监测拟测量误差相关统计量来预警可能出现的误差扩大,当系统处于性能临界区时,在原样本空间上进行准蒙特卡罗增量采样或复制原样本集来控制样本集容量,规避滤波发散的风险.仿真实验表明该算法保持了粒子滤波算法的估计性能,同时有效降低了粒子滤波样本数目,提高了计算效率. When the multiresolutional analysis method is applied to reduce the number of particles in particle filter,it may cause the drop of filtering accuracy.Aiming at this problem,a size control-based multiresolutional particle filter is proposed.The method predicts the possible enlarging of error by observing the quasi-measurement error probability density,and then increases the size of sample set when the filtering is becoming unsteady by quasi-Monte Carlo sampling or multiplying the original particle set to avoid the possible divergence.The simulation results show that the algorithm maintains the estimation performance of particle filter,meantime also reduces the number of particles and improves the computation efficiency.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第11期2664-2668,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60773067)
关键词 粒子滤波 多分辨分析 小波变换 拟测量误差 准蒙特卡罗采样 particle filter multiresolutional analysis wavelet transform quasi measurement error quasi-Monte Carlo sampling
  • 相关文献

参考文献11

  • 1N J Gordon,D J Salmond,A F M Smith.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proc Radar,Sonar and Navigation,1993,140(2):107-113. 被引量:1
  • 2L Hong,N Cui,M Bakich,J R Layne.Multirate interacting multiple model particle filter with application to terrain-based ground target tracking[J].IEE Proc Control Theory Application,2006,153(6):721-731. 被引量:1
  • 3L Hong,Devert Wicker.A spatial-domain multiresolutional particle filter with thresholded wavelets[J].Signal Processing,2007,87(6):1384-1404. 被引量:1
  • 4L Hong.Multiresolutional distributed filtering[J].IEEE Transaction on Automatic and Control,1994,39(4):853-856. 被引量:1
  • 5L Hong.Multirate interacting multiple model filtering for target tracking using multirate models[J].IEEE Transaction on Automatic and Control,1999,44(7):1326-1340. 被引量:1
  • 6Phelim P.Boyle,Ken Seng Tan.Quasi-Monte Carlo methods.The 7th International AFIR Colloquium Proceedings.Cairns,Australia,1997.1-24. 被引量:1
  • 7Guo D,Wang X D.Quasi-monte carlo filtering in nonlinear dynamic systems[J].IEEE Transactions on Signal Processing,2006,54(6):2087-2098. 被引量:1
  • 8V Kadirkamanathan,P Li,M H Jaward,S G Fabri.A sequential Monte Carlo filtering approach to fault detection and isolation in nonlinear systems.Proceedings of the 39th IEEE Conference on Decision and Control'2000.Australia,2000.4341-4346. 被引量:1
  • 9陶国智,卢荣胜,叶声华.动态测量误差的均方定义与组成成份分析[J].计量学报,2002,23(3):233-236. 被引量:2
  • 10袁泽剑,郑南宁,贾新春.高斯-厄米特粒子滤波器[J].电子学报,2003,31(7):970-973. 被引量:77

二级参考文献9

  • 1南京大学数学系编.数值逼近方法[M].北京:科学出版社,1978.. 被引量:1
  • 2G Kitagawa. Monte Carlo filter and smoother for non Gaussian nonlinear state space models [J] .Journal of Computational and Graphical Statistics, 1996,5:1 - 25. 被引量:1
  • 3Avitzour. A stochastic simulation Bayesian approach to multitarget tracking [A] .IEE Proceedings on Radar,Sonar and Navigation [C].UK: lEE, 1995. 被引量:1
  • 4M lsard, Blake. Contour tracking by stochastic propagation of conditional density [ A ]. European Conference on Computer Vision [ C ]. UK:Cambridge, 1996. 343 - 356. 被引量:1
  • 5I Kazuftmfi, K-Q Xiong. Gaussian filters for nonlinear filtering problems[ EB/OL]. available from http://www, researchindex, com. 被引量:1
  • 6S J Julier,J K Uhlmann. A new extension of the Kalman filter to nonlinear systems [ A ]. Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Sinmlation and Controls[ C], Florida: ISADSSC, 1997. 被引量:1
  • 7A Doucet. On Sequential Simtdafion-Based Methods for Bayesian Filtering [ EB/OL]. available from http://www, researchindex, com. 被引量:1
  • 8R Van der Merwe. A Doucet the Unscented Particle Filter, Advances in Neural Information Processing Systems [M]. M IT,2000. 被引量:1
  • 9N J Gordon, D J Salmond, A F M Smith. A novel approach to nonlinear and non-Ganssian Bayesian state estimation [ A ]. IEE Proceedings-F[C]. UK: IEE, 1993,. 被引量:1

共引文献77

同被引文献15

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部