期刊文献+

基于时变自回归参数模型的滚动轴承智能故障诊断 被引量:4

Intelligent Fault Diagnosis of Rolling Bearings Based on Time-varying Autoregressive Model
下载PDF
导出
摘要 轴承运行时的振动信号是典型的非线性非平稳时间序列,对其建立时变自回归参数模型,可以较好地表征轴承振动的非平稳特征。在对轴承振动信号时变自回归模型的时变参数进行大量实验分析研究的基础上,提取均值作为表征轴承运行状态的特征参数,并输入支持向量机分类器进行故障识别与分类,实现滚动轴承的智能故障诊断。实验结果表明,该故障诊断方法可以有效准确地识别滚动轴承的运行状态。 The vibration signals of a bearing are typical nonlinear and non-stationary time series,and the non-stationary can be preferably characterized by establishing their time-varying autoregressive(TVAR)model.After adopting large numbers of experimental analysis to the parameters of the TVAR of the vibration signals,the means of time-varying autoregressive parameters can be extracted as the feature vectors of the bearing’s run state,and were input to support vector machine(SVM)classifier to recognize and classify the fault patterns,then an intelligent fault diagnosis was realized.The experimental results show the effectiveness and accuracy of the proposed approach for recognizing the states of rolling bearings.
作者 李健宝 彭涛
出处 《中国机械工程》 EI CAS CSCD 北大核心 2010年第22期2657-2661,2704,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(60774069) 中国博士后科学基金资助项目(20070410462) 省部级重点基金资助项目(9140A17051010BQ0104) 湖南省教育厅科技计划项目(07C005)
关键词 故障诊断 时变自回归参数模型 特征提取 滚动轴承 fault diagnosis time-varying autoregressive model feature extract rolling bearing
  • 相关文献

参考文献14

  • 1吴今培,孙德山编著..现代数据分析[M].北京:机械工业出版社,2006:284.
  • 2Chen Z S,Yang Y M,Hu Z,et al. Detecting and Predicting Early Faults of Complex Rotating Machinery Based on Cyclostationary Time Series Model[J]. Journal of Vibration and Acoustics, 2006,128 (5) : 666-671. 被引量:1
  • 3Zhan Y M, Mechefske Gearbox Deteriorateion C K. Robust Detection of Using Compromised Autoregressive Modeling and Kolmogorov- Smirnov Test Statistic- Part I : Compromised Autoregressive Modeling with the Aid of Hypothesis Tests and Simulation Analysis[J]. Mechanical System and Signal Processing, 2007,21 : 1953-1982. 被引量:1
  • 4王胜春,韩捷,李志农,李剑峰.基于TVAR的自适应时频分析及在故障诊断中的应用[J].轴承,2007(6):28-31. 被引量:3
  • 5Wang G F,Luo Z G,Qin X D,et al. Fault Identification and Classification of Rolling Element Bearing Based on Time--varying Autoregressive Spectrum [J]. Mechanical System and Signal Processing, 2008,22:934-947. 被引量:1
  • 6张龙,熊国良,柳和生,邹慧君,陈慧.基于时变自回归模型与支持向量机的旋转机械故障诊断方法[J].中国电机工程学报,2007,27(9):99-103. 被引量:23
  • 7Pally R K, Louis Beex A A. Modeling of Time--varying Instantaneous Frequency in a Finitely Correlated Environment[C]//In 16th International Conference on Digital Signal Processing. Santorini, 2009:1165-1170. 被引量:1
  • 8McCormick A C, Nandi A K. Cyclostationarity in Rotating Machine Vibrations [J].Mechanical System and Signal Processing. 1998,12 : 225-242. 被引量:1
  • 9Capdessus C, Sidahmed M, Lacoume J L. Cyclostationarity Processes:Application in Gear Faults Early Diagnosis[J]. Mechanical System and Signal Processing, 2000 ,14: 371-385. 被引量:1
  • 10张海勇,李勘.非平稳随机信号的参数模型分析方法[J].系统工程与电子技术,2003,25(3):386-390. 被引量:14

二级参考文献36

共引文献51

同被引文献28

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部