期刊文献+

基于过程神经网络算法的航天器非平稳随机振动时频分析 被引量:2

TIME-FREQUENCY ANALYSIS BASED ON PROCESS NEURAL NETWORK FOR NON-STATIONARY RANDOM VIBRATION OF SPACECRAFT
下载PDF
导出
摘要 采用时变参数模型对航天器某时段非平稳随机振动信号(NSRVS)进行建模分析,利用过程神经元网络(PNN)求解模型的时变参数并以此确定信号的时变自功率谱密度。计算结果表明:由PNN估计的NSRVS时变参数与自相关Levinson法估计的该参数基本一致,但前者建模物理意义明确,和传统的方法相比避免了计算信号的自相关矩阵,减少了存储空间,提高了频率分辨率和计算速度。 A time-varying parameter model is established to analyze the nonstationary random vibration signal(NSRVS) of a spacecraft in a certain time period.Then the process neural network(PNN) is utilized to obtain the time-varying parameters of this model.Moreover,the time-varying parameters of the NSRVS are applied to determine the time-varying auto-spectral density of the signal.Computation results show that the parameters estimated using the PNN are very close to those estimated using the auto-correlation Levinson method.However,the PNN method is visualized and convenient,it can avoid calculating the self-correlation matrix of the signal,reduce the storage space,and also increase the resolution of the freguency spectrum and the computing speed.
出处 《振动与冲击》 EI CSCD 北大核心 2008年第1期12-15,29,共5页 Journal of Vibration and Shock
关键词 NSRVS 时变参数模型 功率谱 过程神经网络 振动环境 nonstationary random vibration signal(NSRVS),time-varying parameter model,power spectrum,process neural network(PNN),vibration environment
  • 相关文献

参考文献12

  • 1袁宏杰,唐环,姜同敏.飞行器助推段振动环境分析[J].北京航空航天大学学报,2006,32(7):760-763. 被引量:3
  • 2张海勇,李勘.非平稳随机信号的参数模型分析方法[J].系统工程与电子技术,2003,25(3):386-390. 被引量:14
  • 3Grenier Y. Time-Dependent ARMA Modeling of Non-Stationary Signals [J]. IEEE Trans. ASS-P, 1983,31:899-911. 被引量:1
  • 4Rao T S. The Fitting of Non-Stationary TimeSeries Models with Time Dependent Parame-ters [J]. J Royal Statist. Soc. Series B, 1970,32 (2). 被引量:1
  • 5Slepian D. Prolate Spheroidal Wave Function Fourier Analysis and Uncertainty[J]. Part Ⅴ:The Discrete Case. Bell System Tech. J. , 1978,57 ( 5 ) : 1371-1430. 被引量:1
  • 6张龙,熊国良,柳和生,邹慧君,陈慧.时变参数模型及其在非平稳振动分析中的应用[J].振动与冲击,2006,25(6):49-53. 被引量:9
  • 7Grenier Y. Time-Dependent ARMA Modeling of Non-Stationary Signals [J]. IEEE Trans. AS-SP, 1983,31:899-911. 被引量:1
  • 8Rao T S. The Fitting of Non-Stationary Time-Series Models with Time Dependent Parame-ters [ J ]. J Royal Statist. Soc. Series B,1970,32(2). 被引量:1
  • 9He Xingui, Liang Jiuzher. Process Neural Network. World Computer congress 2000, Proceedings of Conference on Intelligent In-formation Processing. August 2000. 143 146. 被引量:1
  • 10Kayhan A S, EI-Jaroudi A, Chaparro L F. Da-taAdaptive Evolutlonary Spectral Estimation[ J]. IEEE Trans. on Signal Processing, 1995,43 ( 1 ) :204-213. 被引量:1

二级参考文献19

共引文献26

同被引文献19

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部