期刊文献+

基于自回归–连续隐马尔可夫模型的离心泵故障诊断 被引量:18

Fault Diagnosis Methods for Centrifugal Pump Based on Autoregressive and Continuous Hidden Markov Model
下载PDF
导出
摘要 根据振动与语音信号的相似性和离心泵故障信号的特点,将连续隐马尔可夫模型引入了离心泵的故障诊断中。利用自回归谱不受数据长度的限制,及自回归模型参数对状态变化规律反映敏感的特点,以信号的12阶自回归谱系数为特征矢量,将其输入到各个状态连续隐马尔可夫进行训练,来实现离心泵的故障诊断。为防止数据下溢,引入前向–后向比例因子算法求其对数似然概率,并且采用K-means算法对连续隐马尔可夫进行参数初始化。在给定的观测序列中每一种模型的优化路径通过Viterbi算法实现,用Baum-Welch算法实现参数重估。最后通过2BA-6A离心泵试验系统验证了该方法的有效性。 According to the similarity between vibration signal and speech signal, a new method with fault diagnosis of for centrifugal pump based on continuous hidden markov model (CHMM) was introduced. The autoregressive (AR) spectrum was not restricted by length of data, and AR spectrum parameters was sensitive to law of condition change. 12 rank AR spectrum coefficients of signals are considered as feature vectors of running state of centrifugal pump to train in each CHMM, fault classification can be made. Forwards-backwards algorithm was introduced to calculate log-likelihood avoiding the data to underflow and K-means algorithm was also used to initialize the parameter. In the given observation sequence, every model was optimized with Viterbi algorithm, and parameters were re-estimated with Baum-Welch algorithm. The method was tested with the experimental data collected from the 2BA-6A centrifugal pump experimental system and the result demonstrates that the model is effective to classify classical faults.
出处 《中国电机工程学报》 EI CSCD 北大核心 2008年第20期88-93,共6页 Proceedings of the CSEE
基金 吉林省教育厅科学技术研究项目资助(2007047)
关键词 离心泵 故障诊断 连续隐马尔可夫模型 自回归谱分析 centrifugal pump fault diagnosis continuous hidden Markov model autoregressive spectrum
  • 相关文献

参考文献23

  • 1Newland D E. Progress in the application of wavelet theory to vibration analysis[C]. Proceedings of the 1995 ASME Design Engineering Technical Conference, Boston, MA, USA, 1995: 103-107. 被引量:1
  • 2Ocak H, Loparo K A. New bearing fault detection and diagnosis scheme based on hidden Markov modeling of vibration signals proceeding [C]. 2001 IEEE International Conference, 2001:3141-3144. 被引量:1
  • 3陈进主编..机械设备振动监测与故障诊断[M].上海:上海交通大学出版社,1999:252.
  • 4黄文虎等编著..设备故障诊断原理、技术及应用[M].北京:科学出版社,1996:435.
  • 5周云龙,洪君,赵鹏.HHT与RBF神经网络在离心泵故障振动信号处理中的应用[J].热能动力工程,2007,22(1):84-87. 被引量:16
  • 6洪君,樊志华,王锦锋,周云龙.小波包和模糊神经网络在离心泵故障振动信号处理中的应用[J].华电技术,2006,29(9):1-5. 被引量:5
  • 7Atlas L , Ostendorf M , Bernard G D. Hidden markov models for monitoring machining tool-wear[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Istanbuh Turkey, 2000: 322-326. 被引量:1
  • 8Smyth P. Hidden Markov models for fault detection in dynamic systems[J]. Pattern Recognition, 1994, 27(12): 149-164. 被引量:1
  • 9Barrett R F. Frequency tracking using hidden Markov models with amplitude and phase information[J]. IEEE Transactions on Signal Processing, 1993, 41(10): 2965-2976. 被引量:1
  • 10Bengio S, Bourlard H, Weber K. An EM algorithm for hmm switches emission distributions represented by hmm[R] . Martigny , Switzerland : DalleMolle Institute for Perceptual Artificial Intelligence, 2000. 被引量:1

二级参考文献81

共引文献215

同被引文献284

引证文献18

二级引证文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部