期刊文献+

一种峭度FastICA改进算法 被引量:5

An Improved Kurtosis FastICA Algorithm
下载PDF
导出
摘要 独立分量分析(ICA)是盲分离的核心技术,是信号处理领域的一种新的发展。FastICA是独立分量分析中收敛速度较快的算法,因为它的收敛速度快且要求内存空间小而备受关注,但存在步长μ选取不当可能导致算法收敛速度减慢甚至不收敛的问题。为了克服其缺点,在基于峭度的FastICA算法的基础上增加精确线性搜索优化技术来求μ,使改进后的算法收敛速度更快且不需要手动来选择步长参数。编制相应的matlab程序,将改进的算法用于语音信号分离,验证了它的高效性。 Independent component analysis(ICA)is the kernel technology of blind signal processing and a new development of signal processing technology.FastICA is a fast algorithm of ICA.As its convergence is very fast and the required memory is small,it has attracted broad attraction,but if step-size μ was chose incorrectly,the algorithm may be having slow convergence even no convergence.To overcome the drawbacks,exact line search was imposed on this fundament for μ.The improved algorithm not only has high convergence speed and the step size has no need to choose by people.It makes the correspond matlab programs that is used to separate the audio signal,the experimental results showthat it is an efficient method.
作者 高巧玲 刘辉
出处 《计算机技术与发展》 2010年第11期114-116,121,共4页 Computer Technology and Development
基金 国家自然科学基金(20927005)
关键词 独立分量分析 快速独立分量分析 峭度 精确线性搜索 independent component analysis fastICA kurtosis exact line search
  • 相关文献

参考文献12

  • 1Comon P. Independent component analysis, a new concept[J]. Signal Processing, 1994,36(3) :287 - 314. 被引量:1
  • 2郭武,朱长仁,王润生.一种改进的FastICA算法及其应用[J].计算机应用,2008,28(4):960-962. 被引量:20
  • 3Cardoso J F. Blind signal separation: statistic principles [ J ]. Proceeding of the IEEE, 1998,86(10) :2005 - 2009. 被引量:1
  • 4杨福生,洪波著..独立分量分析的原理与应用[M].北京:清华大学出版社,2006:205.
  • 5Zarzoso V,Comon P. Comparative speed analysis of FastICA [C]//In Proc. ICA-2007,7th International Conference on Independent Component Analysis and Signal Separation. London, UK: [s. n. ] ,2007:293 - 300. 被引量:1
  • 6Hyvarinen A, Oja E. A fast fixed - point algorithm for independent component analysis[ J ]. Neural Computation, 1997,9(7):1483 - 1492. 被引量:1
  • 7Hyvarinen A. Fast and robust fixed - point algorithms for independent component analysis[J ]. IEEE Transactions on Neural Networks, 1999,10(3) : 626 - 634. 被引量:1
  • 8Hyvarinen A. A family of fixed- point algorithms for independent component analysis[ C]//In Proc. lEER Neural Networks for Signal Processing(NNSP) Workshop. Amelia Island, FL: [s. n. ], 1997:388 - 397. 被引量:1
  • 9曾生根,朱宁波,包晔,夏德深.一种改进的快速独立分量分析算法及其在图象分离中的应用[J].中国图象图形学报(A辑),2003,8(10):1159-1165. 被引量:26
  • 10王小敏,曾生根,夏德深.独立分量分析算法的改进研究[J].电子器件,2008,31(5):1681-1684. 被引量:4

二级参考文献33

  • 1钟静,傅彦.基于快速ICA的混合语音信号分离[J].计算机应用,2006,26(5):1120-1121. 被引量:12
  • 2Comon P.Independent component analysis:a new concept?[J].Signal Processing,1994,36(3):287-314. 被引量:1
  • 3Bell A J,Scjnowski T J.An information-maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995,7(6):1129-1159. 被引量:1
  • 4Cardoso J F,Laheld B H.Equivariant adaptive source separation[J].IEEE Transactions on Signal Processing,1996,44(12):3017-3030. 被引量:1
  • 5Park H M,Jeong H Y,Lee T W,et al.Subband-based blind signal separation for noisy speech recognition[J].Electronics Letters,1999,35(23):2011-2012. 被引量:1
  • 6Back A D.A first application of independent component analysis to extracting structure from stock returns[J].Neural Systems,1997,8(4):473-484. 被引量:1
  • 7Delfosse N,Loubaton P.Adaptive blind separation of independent sources:a deflation approach[J].Signal Processing,1995,45(1):59-83. 被引量:1
  • 8Hyvarinen A,Oja E.A fast fixed-point algorithm for independent component analysis[J].Neural Computation,1997,9(7):1483-1492. 被引量:1
  • 9Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626-634. 被引量:1
  • 10Lu W,Rajapakse J C.Appreach and applications of constrained ICA[J].IEEE Transactions on Neural Networks,2005,16(1):203-212. 被引量:1

共引文献54

同被引文献50

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部