期刊文献+

基于盲分离的多分量LPI雷达信号检测 被引量:3

Multi-component of LPI Radar Signal Detection Based on Blind Source Separation
下载PDF
导出
摘要 针对现有信号处理模型难以解决多分量信号的处理问题,以及现有的多分量处理只讨论了多分量LFM信号的问题,提出了一种新的多分量处理模型和处理方法,首先通过改进的FastICA盲分离算法实现多分量信号的分离,提出了一种基于AHT的判别方法,对分离后的噪声和信号进行判别,有效地解决了多分量信号的检测处理难题。 There is a problem in existing multi-component treatment models and algorithms,and only the multi-component LFM signals are discussed.To solve above problems,this paper proposes a new processing model and processing method.Firstly multi-component signal separation is realized through the improved FastICA blind source separation algorithm and a discriminant method based on AHT is proposed.Therseparated noise and signal are discriminated,solving the knotty problem of the multi-component signal detection processing.
出处 《指挥控制与仿真》 2017年第1期89-93,共5页 Command Control & Simulation
关键词 独立分量 盲分离 多分量 信号检测 independent component blind source separation multi-component signal detection
  • 相关文献

参考文献8

二级参考文献47

  • 1李广彪,张剑云.基于负熵最大化FastICA算法的雷达信号分选[J].舰船电子对抗,2005,28(3):23-28. 被引量:12
  • 2王晓燕,韩俊宁,楼顺天.基于盲信源分离技术的雷达信号分选研究[J].电子对抗,2005(5):6-10. 被引量:4
  • 3Waheed K and Salem F M. Blind information theoretic multiuser detection algorithms for DS-CDMA and WCDMA downlink systems[J]. IEEE Transactions on Neural Networks, 2005, 16(4): 937-948. 被引量:1
  • 4Schober R, Gerstacker W H, and Lampe L. On suboptimum receivers for DS-CDMA with BPSK modulation[J]. Signal Processing, 2005, 85(6): 1149-1158. 被引量:1
  • 5Gupta M and Santhanam B. Prior ICA based blind multiuser detection in DS-CDMA systems[C]. IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2004, 2: 2155-2159. 被引量:1
  • 6Raja G T and Reddy O. Improved ICA based multi-user detection of DS-CDMA[C]. First International Conference on Eraerging Trends in Engineering and Technology (ICETET'08), Nagpur, Maharashtra, India, 2008: 238-241. 被引量:1
  • 7Yue F and Takaya K. An application of ICA to DS-CDMA detection[C]. Canadian Conference on Electrical and Computer Engineering (CCECE 2007), Vancouver, BC, 2007: 609-612. 被引量:1
  • 8Alikhanian H and Abolhassani B. Subspace hebbian learning and maximum likelihood ICA based algorithms for blind adaptive multiuser detectors[C]. 2007 IEEE International Symposium on Signal Processing and Information Technology Giza, 2007: 339-343. 被引量:1
  • 9Novey M and Adali T. Complex ICA by negentropy maximization[J]. IEEE Transactions on Neural Networks, 2008, 19(4): 596-609. 被引量:1
  • 10Lin Q H, Zheng Y R, and Yin F L. A fast algorithm for one-unit ICA-R[J]. Information Sciences, 2007, 17(5): 1265-1275. 被引量:1

共引文献34

同被引文献32

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部