期刊文献+

强模糊支持向量机在稻瘟病气象预警中的应用 被引量:13

Application of strong fuzzy support vector machine on weather early warning of rice blast
原文传递
导出
摘要 针对稻瘟病气象预警中样本含有模糊信息,支持向量机对含有模糊信息样本无法处理的问题,建立适合稻瘟病气象预警特点的分类预警算法(强模糊支持向量机)。以模糊事件的可信性测度为基础,将模糊分类问题转化为求解模糊机会约束规划问题;将模糊机会约束规划化转化为与其等价的二次规划,据此给出强模糊支持向量机。并且研究了强模糊支持向量机在稻瘟病气象预警中的应用方法。对浙江省宁波市某水稻种植区2004—2007年稻瘟病气象预警试验,数据结果与实际情况吻合。由此可说明强模糊支持向量机能较好地解决样本中含有模糊信息的分类问题,基于强模糊支持向量机的稻瘟病气象预警方法对于稻瘟病气象预警有较大的优越性。 For a support vector machine can not deal with samples of fuzzy information contained in the weather early warning of rice blast,the classification method for early warning is constructed to meet the features of the weather early warning of rice blast in this work.Based on the creditability measure of fuzzy event,fuzzy classification problems can be transferred into solving the fuzzy chance constrained programming problem.Fuzzy chance constrained programming is transferred into its equivalent quadratic programming and strong fuzzy support vector machine is developed,Application of strong fuzzy support machine in the weather early warning of rice blast is studied.According to the weather early warning experiment in rice-growing areas in Ningbo City,Zhejiang province,the numerical results are fit closely to the actual results.The support vector machine can deal with the classification problems well for samples of fuzzy information and the method of weather early warning of rice blast based on strong fuzzy support vector machine has greater superiority over weather early warning of rice blast.
出处 《中国农业大学学报》 CAS CSCD 北大核心 2010年第3期122-128,共7页 Journal of China Agricultural University
基金 国家自然科学基金资助项目(10926198) 国家"十一五"科技支撑计划项目(2006BAJ07B09) 浙江省自然科学基金资助项目(Y606082)
关键词 稻瘟病 预警 机器学习 强模糊支持向量分类机 可信性测度 rice blast early warning machine learning strong fuzzy support vector classification creditability measure
  • 相关文献

参考文献13

  • 1Cristianini N, Shawe-TaylorJ. Introduction to Support Vector Machines[M]. Cambridge, UK: Cambridge University Press, 2000 : 21-58. 被引量:1
  • 2邓乃扬,田英杰著..数据挖掘中的新方法 支持向量机[M].北京:科学出版社,2004:408.
  • 3邓乃扬,田英杰著..支持向量机:理论、算法与拓展[M].北京:科学出版社,2009:244.
  • 4刘宝碇等著..不确定规划及应用[M].北京:清华大学出版社,2003:301.
  • 5刘宝碇,彭锦著..不确定理论教程[M].北京:清华大学出版社,2005:399.
  • 6杨志民,刘广利著..不确定性支持向量机原理及应用[M].北京:科学出版社,2007:237.
  • 7Lin Chunfu , Wang Shengde. Fuzzy Support Vector Machines[J].IEEE Transactions on Neural Networks, 2002(2) :464-471. 被引量:1
  • 8Tao Qing, Wang Jue. A New Fuzzy Support Vector machine Based on the Weighted Margin[J]. Neural Procession Letters,2004(3):139-150. 被引量:1
  • 9Lee K Y,Kim D W,Lee K H,et al. Possibilistic Support vector Machines[J].Pattern Recognition, 2005 (3) : 1325-1327. 被引量:1
  • 10袁亚湘,孙文瑜著..最优化理论与方法[M].北京:科学出版社,1997:640.

二级参考文献9

  • 1张文修.模糊数学基础[M].西安:西安交通大学出版社,1995.. 被引量:8
  • 2Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag,1995 被引量:1
  • 3Cristianini N, Shawe-Taylor J. Introduction to Support Vector Machines. Cambridge, UK: Cambridge University Press, 2000 被引量:1
  • 4Lin Chunfu, Wang Shengde. Fuzzy Support Vector Machines.IEEE Trans on Neural Networks, 2002, 13(2)~ 464-471 被引量:1
  • 5Tao Qing, Wang Jue. A New Fuzzy Support Vector Machine Based on the Weighted Margin. Neural Procession Letters,2004, 20(3): 139-150 被引量:1
  • 6Lee K Y, Kim D W, Lee K H, etal. Possibilistic Support Vector Machines. Pattern Recognition, 2005, 38(3): 1325-1327 被引量:1
  • 7Zadeh L A. Fuzzy Sets. Information and Control, 1965, 8(3):338-353 被引量:1
  • 8Zadeh L A. Fuzzy Sets as a Basis for a Theory of Possibility.Fuzzy Sets and Systems, 1978, 1(1): 3-28 被引量:1
  • 9Liu B, Iwamura K. Chance Constrained Programming with Fuzzy Parameters. Fuzzy Sets and Systems, 1998, 94(2): 227-237 被引量:1

共引文献18

同被引文献195

引证文献13

二级引证文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部