期刊文献+

未确知支持向量机 被引量:3

Unascertained Support Vector Machine
下载PDF
导出
摘要 提出一种处理样本中含有未确知信息(一种不确定性信息)的支持向量机—未确知支持向量机(Unascertained support vector machine,USVM)算法.首先,以未确知数学为基础,将含有未确知信息的分类问题转化为求解未确知机会约束规划问题.然后,将其转化为与其等价的二次规划.据此给出未确知支持向量机.理论分析和试验结果均表明,该算法是有效、可行的. In this paper, we propose an unascertained support vector machine (USVM) for classification problem with unascertained information (a kind of uncertain information). First, based on unascertained mathematics, classification problems containing unascertained information are converted to solving unascertained chance constrained programming problems. Then, the unascertained chance constrained programming is converted to its equivalent quadratic programming. Based on these theories, the algorithm of a unascertained support vector machine is given. Theoretical analysis and experiments show that the proposed USVM is effective and feasible.
出处 《自动化学报》 EI CSCD 北大核心 2013年第6期895-901,共7页 Acta Automatica Sinica
基金 国家自然科学基金(10926198 11201426) 浙江省自然科学基金(LQ12A01020)资助~~
关键词 机器学习 未确知支持向量机 未确知信息 未确知数 Machine learning, unascertained support vector machine (USVM), unascertained information, unascertained number
  • 相关文献

参考文献13

二级参考文献46

  • 1杨绪兵,陈松灿.基于原型超平面的多类最接近支持向量机[J].计算机研究与发展,2006,43(10):1700-1705. 被引量:16
  • 2郑晓星,吴今培.基于支持向量数据描述的数据约简[J].现代电子技术,2007,30(2):74-76. 被引量:6
  • 3徐宝,何映.亚健康状态及其研究现状[J].中国性科学,2007,16(2):16-17. 被引量:20
  • 4张文修.模糊数学基础[M].西安:西安交通大学出版社,1995.. 被引量:8
  • 5Mangasarian O L, Wild E W. Multisurfaee Proximal Support Vector Machine Classification via Generalized Eigenvalues. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28 ( 1 ) : 69 - 74. 被引量:1
  • 6Jayadeva, Khemchandai R, Chandra S. Fuzzy Proximal Support Vector Classification via Generalized Eigenvalues// Proc of the 1 st International Conference on Pattern Recognition and Machine Intelligence. Kolkata, India, 2005 : 360 - 363. 被引量:1
  • 7Jayadeva, Khemchandai R, Chandra S. Fuzzy Multi-Category Proxi- mal Support Vector Classification via Generalized Eigenvalues. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 2007, 11(7) : 679 -685. 被引量:1
  • 8Jayadeva, Khemchandai R, Chandra S. Twin Support Vector Machines for Pattern Classification. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29 (5) : 905 - 910. 被引量:1
  • 9Li Haifeng, Jiang Tao, Zhang Keshu. Efficient and Robust Feature Extraction by Maximum Margin Criterion. IEEE Trans on Neural Networks, 2006, 17( 1 ) : 157 - 165. 被引量:1
  • 10Zhou Zhihua, Zhan Dechuan, Yang Qiang. Semi-Supervised Learn- ing with Very Few Labeled Training Examples// Proc of the 22nd AAAI Conference on Artificial Intelligence. Vancouver, Canada, 2007 : 675 - 680. 被引量:1

共引文献2669

同被引文献22

  • 1高世健,王丽珍,肖清.一种基于U-AHC的不确定空间co-location模式挖掘算法[J].计算机研究与发展,2011,48(S3):60-66. 被引量:7
  • 2肖清,陈红梅,王丽珍.基于DS理论的不确定空间co-location模式挖掘[J].云南大学学报(自然科学版),2011,33(S2):182-187. 被引量:3
  • 3Smola A J, Sch61kopf B. A tutorial on support vector re- gression. Statistics and Computing, 2004, 14(3): 199-222. 被引量:1
  • 4Alexander I, Forrester J, Keane A J. Recent advances in surrogate-based optimization. Progress in Aerospace Sci- ences, 2009, 45(1-3): 50-79. 被引量:1
  • 5Zhou X J, Ma Y Z, Li X F. Ensemble of surrogates with re- cursive arithmetic average. Structural and Multidisciplinary Optimization, 2011, 44(5): 651-671. 被引量:1
  • 6Wang Z G, Zong C Q, Xue N W. Bidirectional sequence la- beling via dual decomposition. In: Proceedings of the 12th China National Conference, CCL 2013 and First Interna- tional Symposium. Suzhou, China: Springer, 2013. 325-332. 被引量:1
  • 7Kudo T, Matsumoto Y. Chunking with support vector machines. In: Proceedings of the 2nd Meeting of the North American Chapter of the Association for Compu- tational Linguistics on Language Technologies. Pittsburgh, PA, USA: Association for Computational Linguistics, 2001. 192-199. 被引量:1
  • 8Tjong Kim Sang E F. Noun phrase recognition by sys- tem combination. In: Proceedings of the 1st North Ameri-can Chapter of the Association for Computational Linguis- tics Conference. Seattle, Washington, USA: Association for Computational Linguistics, 2000. 50-55. 被引量:1
  • 9Chen W L, Zhang Y J, Isahara H. An empirical study of Chi- nese chunking. In: Proceedings of the 2006 COLING/ACL on Main Conference Poster Sessions. Sydney, Australia: As- sociation for Computational Linguistics, 2006. 97-104. 被引量:1
  • 10Chen K H, Chen H H. Extracting noun phrases from large- scale texts: a hybrid approach and its automatic evaluation. In: Proceedings of the 32nd Annual Meeting of Association of Computational Linguistics. New York, USA: Association for Computational Linguistics, 1994. 234-241. 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部