期刊文献+

半监督型广义特征值最接近支持向量机 被引量:4

Semi-Supervised Proximal Support Vector Machine via Generalized Eigenvalues
原文传递
导出
摘要 广义特征值最接近支持向量机(GEPSVM)是近年提出的一种两分类方法.本文结合GEPSVM的平面特点和流形学习,给出一类半监督学习算法SemiGEPSVM.该方法不仅仍保持对诸如XOR问题的分类能力,而且在每类仅有一个有标样本的极端情形下,仍具有适用性.当已标样本不能用于构建超平面时,本文采用k-近邻方法选择样本并标记类别.一旦已标样本的个数可构建超平面时,采用本文的选择方法标记样本.此外,本文还从理论上证明该算法存在全局最优解.最后,SemiGEPSVM算法的有效性在人工数据集和标准数据集上得到验证. A binary classifier, proximal support vector machine via generalized eigenvalues (GEPSVM), has been proposed recently. In this paper, with the characteristics of plane classifiers and manifold learning, an effective semi-supervised algorithm SemiGEPSVM is proposed. It keeps the performance of handling XOR problems and is suitable for more challenges, even with only one labeled sample per class. While the number of labeled samples is not satisfactory to generate plane, k-nearest neighbor is used to select the unlabelled samples. Otherwise, the proposed sample selection method with plane characteristics is adopted. Furthermore, it is proved that the proposed selection method is global optimization. And the experimental results of SemiGEPSVM are verified on one toy problem and some benchmark datasets.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第3期349-353,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60603029 60773061)
关键词 支持向量机 半监督学习 流形学习 Support Vector Machine, Semi-Supervised Learning, Manifold Learning
  • 相关文献

参考文献11

  • 1Fung G, Mangasarian O L. Proximal Support Vector Machine Classifiers// Proc of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001 : 77 - 86. 被引量:1
  • 2Mangasarian O L, Wild E W. Multisurfaee Proximal Support Vector Machine Classification via Generalized Eigenvalues. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28 ( 1 ) : 69 - 74. 被引量:1
  • 3Jayadeva, Khemchandai R, Chandra S. Fuzzy Proximal Support Vector Classification via Generalized Eigenvalues// Proc of the 1 st International Conference on Pattern Recognition and Machine Intelligence. Kolkata, India, 2005 : 360 - 363. 被引量:1
  • 4Jayadeva, Khemchandai R, Chandra S. Fuzzy Multi-Category Proxi- mal Support Vector Classification via Generalized Eigenvalues. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 2007, 11(7) : 679 -685. 被引量:1
  • 5Jayadeva, Khemchandai R, Chandra S. Twin Support Vector Machines for Pattern Classification. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29 (5) : 905 - 910. 被引量:1
  • 6Li Haifeng, Jiang Tao, Zhang Keshu. Efficient and Robust Feature Extraction by Maximum Margin Criterion. IEEE Trans on Neural Networks, 2006, 17( 1 ) : 157 - 165. 被引量:1
  • 7杨绪兵,陈松灿.基于原型超平面的多类最接近支持向量机[J].计算机研究与发展,2006,43(10):1700-1705. 被引量:16
  • 8Zhou Zhihua, Zhan Dechuan, Yang Qiang. Semi-Supervised Learn- ing with Very Few Labeled Training Examples// Proc of the 22nd AAAI Conference on Artificial Intelligence. Vancouver, Canada, 2007 : 675 - 680. 被引量:1
  • 9Zhou Dengyong, Weston J, Gretton A. Ranking on Data Manifolds //Thrun S, Saul L K, Scholkopf B, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Paress, 2004, 16:169-176. 被引量:1
  • 10Zhang Dengyong, Zhou Zhihua, Chen Songcan. Semi-Supervised Dimensionality Reduction // Proc of the 7th SIAM International Conference on Data Mining. Minneapolis, USA, 2007:629 -634. 被引量:1

二级参考文献9

  • 1G Fung,O L Mangasarian.Proximal support vector machine classifiers[C].In:Proc of Knowledge Discovery and Data Mining.New York:ACM Press,2001.77-86 被引量:1
  • 2T Evgeniou,M pontil,T Poggio.Regularization networks and support vector machines[J].Advances in Computational Mathematics,2000,13(1):1-50 被引量:1
  • 3J A K Suykens,T Van Gestel,J DeBrabanter,et al.Least Squares Support Vector Machines[M].Singapore:World Scientific Publishing Co,2002 被引量:1
  • 4O L Mangasarian,E W Wild.Multisurface proximal support vector machine classification via generalized eigenvalues[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2006,28(1):69-74 被引量:1
  • 5R O Duda,P E Hart,D G Stock.Pattern Classification[M].2nd Edition.New York:John Wiley & Sons,Inc,2001 被引量:1
  • 6S Haykin.Neural Networks:A Comprehensive Foundation,2nd Edition.Englewood Cliffs,NJ:Pretice-Hall,Inc,2001 被引量:1
  • 7Haifeng Li,Tao Jiang,Keshu Zhang.Efficient and robust feature extraction by maximum margin criterion[C].In:Proc Conf Advances in Neural Information Processing Systems.Cambrigde,MA:MIT Press,2004.97-104 被引量:1
  • 8P M Murphy,D W Aha.UCI machine learning repository[OL].http://www.ics.uci.edu/~mlearn/MLRepository.html,1992 被引量:1
  • 9D R Musicant.NDC:Normally distributed clustered datasets[OL].http://www.cs.wisc.edu/~musicant/data/ndc/,1998 被引量:1

共引文献15

同被引文献38

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部