期刊文献+

基于参数化遗传神经网络的植物病害预测方法 被引量:12

Parametric Fuzzy Neural Network Based on Genetic Algorithm Configured for Plant Disease Prediction
下载PDF
导出
摘要 将混合神经网络 (PFNN FG)技术应用于植物病害预测 ,其输入矢量含模糊分量 ,遗传算法优化配置各参数。变形 Sigm oid函数用于不同的隐含层 ,构成参数化神经网络。网络的输入层引入模糊集合理论 ,使网络能处理语义变量。将 PFNN FG和其他神经网络 (如前向神经网络、径向基神经网络等 )用于大豆基准问题进行分析比较 ,结果是 PFNN FG在精度和训练速度上优于其他网络。将 PFNN FG和前向神经网络用于 2组黄瓜霜霉病数据 ,前者测试组的均方根误差小于后者。 This paper proposed a hybrid neural network based on parametric feedforward neural networks with fuzzy inputs configured by a genetic algorithm (PFNN _FG). A variant Sigmoid function was used at various hidden layers. The fuzzy set theory was employed at the input layer to make the processing of linguistic variables possible. The parameters of the variant Sigmoid function and the fuzzy parameters were configured by a genetic algorithm. A comparative analysis between PFNN _ FG and other neural networks on benchmark problems shows that PFNN _ FG is comparable with the other networks in terms of accuracy of the obtained results, but it is much faster.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2004年第6期110-114,共5页 Transactions of the Chinese Society for Agricultural Machinery
关键词 植物 病虫害防治 参数化神经网络 模糊集 遗传算法 Plants, Techniques of pest control, Parametric neural network, Fuzzy set, Genetic algorithm
  • 相关文献

参考文献13

  • 1Francl L J,Larson C,De Wolf E D.Description and evaluation of the NDSU regional wheat disease forecasting system.Proceedings of 2000 National Fusarium Head Blight Forum,Erlanger,Kentucky,2000. 被引量:1
  • 2Visser U,Voges U,Streit U.Integration of AI-,database- and telecommunication-techniques for the plant protection expert system PROPLANT.International Conference of Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE),San Antonio,1994. 被引量:1
  • 3Moraga C.Neuro-fuzzy modeling of compensating systems.In:Sincak P,Vascak J,eds.Quo vadis Copputational Intelligence? Heidelberg:Springer Verlag,2000.385~398 被引量:1
  • 4Han J,Moraga C.The influence of the Sigmoid function parameters on the speed of Backpropagation learning.In:Mira,Sandoval,eds.From natural to artificial neural computation.Heidelberg:Springer Verlag,1995.195~201 被引量:1
  • 5Moraga C.Properties of parametric feedforward networks.Proceedings XXIII Conferencia Latinoamericana de Informatica,Valparaiso,Chile,1997. 被引量:1
  • 6Riedmiller M,Braun H.A direct adaptive method for faster Backpropagation learning:the RPROP algorithm.Proc.IEEE Int.Neural Networks,San Francisco,1993. 被引量:1
  • 7Mitra M S,Pal S K.Rough fuzzy MLP:knowledge encoding and classification.IEEE Trans.on Neural Networks,1998,9(6):1203~1216 被引量:1
  • 8Silvert W.Symmetric summation:a class of operations on fuzzy sets.IEEE Trans.on Systems,Man and Cybernetics,1979,9:659~667 被引量:1
  • 9Xu L.On RBF nets and kernal regression,statistical consistency,convergence rate,and receptive field size.Neural Networks,1994,7:609~628 被引量:1
  • 10Fahlman S E,Lebiere C.The cascade-correlation learning architecture.Technical Reprot CMU-CS-90-100,School of Computer Science,Carnegie Mellon University,1991. 被引量:1

共引文献5

同被引文献155

引证文献12

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部